EVALURTION AND ENHANCENENT OF THE AFIT AUTONOMOUS FACE
RECOGNITION WACHINECU) AIR FORCE INST OF TECH

NRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

UNCLASSIFIED L C LAMBERT DEC 87 AFIT/GE/ENG/87D-33

3,

i

VRN

[0 g

420y

AR

4

MUOATR AUXTUAN

(RN

FORMS TN, DL U

RIS

Y 00 W N L L

KX

a0

KPLN A

o N %

-\---.N.r e

o da A W

LA AN

i

.
WL NP, P

S |
S EE

Pd .F...

20

18

=
I

Ids
-
e
53
-
[
[N
(58

o
[
Loy

|.0

i

=
=

16

_

i

1.4

—_—
———
—
_

MICROCOPY RESOLUTION TES] CHART

STANDARDS Ty ¢ A

NATIONAL BUKEAL o)

* * o 7 ol $ak X * \ ¥, o Sab * », YRJ 4. " T .ol 1ah el) v 5, vy N, 7 WU W L r g
I
‘ @

€,
)
N
P
o0
Q
X DTIC
- w
<t T IOTETM
| e FEB0O1E8 |
D) £t
<t AP
H :
(
Evaluation and Enhancement of the AFIT .
Autonomous Face Recognition Machine :
THESIS ‘
Laurence C. Lambert 4
9 Captain, USAF
AFIT/GE/ENG/87D-~35
DEPARTMENT OF THE AIR FORCE
- AIR UNIVERSITY ‘
AIR FORCE INSTITUTE OF TECHNOLOGY |
— »
) _.
Wright-Patterson Air Force Base, Ohio N
" DISTRIBUTION STATEMENT A 0 0
Approved for pubkc rolecon) 8 8 2 4 6 »
Distributea Uaiiinitad K

AFIT/GE/ENG/87D-35

Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine

THESIS

Laurence C. Lambert —
Captain, USAF i h i §-¢
o N

AFIT/GE/ENG/87D-35

y
.
I

Approved for public release; distribution unlimited

AFIT/GE/ENG/87D-35

Evaluation and Enhancement of the AFIT
Autonomous Face Recognition Machine

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

e e e

‘ Ar‘(Rw."iOn F'Ol"
Laurence C. Lambert, B.S.

Captain, USAF

December 1987

Approved for public release; distribution unlimited

P VR Y L
WA "\'\ o, \.'\ 's-" o

N "-. '.- \ T et

L et VYT Yy YYw¢vs

Acknowledgements

N To Christopher Andrew Lambert. Over the past year I have
poured my thoughts of you, my frustrations and my love for
N you, into this work in order to make it a fitting dedication
N to you. I thank God for the strength and endurance that I
| needed to complete this work and for the part that you have
played and continue to play in my life.

To my wife Claire. You have shown more patience towards
me than I ever deserved during this past year. But I guess
that was easy for you because of all the years of experience
h you have had in dealing with me.

To Professor Matthew Kabrisky. Thankyou. Your advice,
X ideas, knowledge, humor, stories (in class these were often
called hiatus), optimism and guidance have been invaluable.
‘G To everyone else. Mr Dan Zambon, the student’'s best
i friend. Add 50% to your total manhours if you don’t have
' Mr Zambon managing the equipment in your lab. My subjects,
whose friendship I won’t forget, nor will I forget their

faces (they appear in various figures in this thesis).

ii

N G T N R R Sy R L TN S R Pt e e e . W
‘SN '}."- ‘-) .-..' . . .'\-’. o«)\-"‘{."-',".-.' ':‘.J‘:“__\ "-{.‘. ' '-:.\':- .--.'- .'\- ‘. S ‘-(‘- AT %) \‘(' '-\- .l .‘ i ." N .."’.'- s .“- v X

P e

L ah g P i

-, v _w

5, Lo O

ol

)'I‘d\)'f'

Table of Contents

Page
Acknowledgements ii
List of Figures « ¢ ¢ v v v v v v e e e W v

List of Tables ¢ & & v v v v v e e e e e e e vii

Abstract e e e e e e e e e e e e e e e e .owviidd

I. Introduction O 1-1
Background . 141
Problem Statement 1-2
Scope e e e e e e e e e e e e e e e e e 1-2
Assumptions L. L 0 0. ... 1-3
Standards 1-4
Approach 1-4
Thesis Structure 1-5

I1. Background of the AFIT Face Recognition System . . 2-1

Cortical Thought Theory . . 2-1

The Recognition System 2-4

System Environment . 2-4

Image Acquisition and Preproce551ng 2~4

Face Location e e e e e e e e e e 2-9

Windows . . e e e e e e e e e 2-12

Gestalt Calculatlon e e e e e 2-15

Recognition 2-18

Summary . . 2-23

III. Evaluation and Enhancement 3-1

System Environment e e e e 3

Image Acquisition and Preproce551ng e e e e 3-
Moving Target Indicator . 3~
Elliptical Mask e e e e e e e e . 31
Brightness Norma11zat10n e e e e e e e .. 31
Contrast Enhancement 3-=21
Smoothing 3=22

Face Location 3-24
Evaluation of the Orxg1na1 Algor1thm ... 3-24
New Algorithm . . . e e+« .« « . 3-26

Windows . . e e e e 4 e 4 e e e e e . 3-33
Gestalt Calculatxon e e e v e e e e e« « W+ <« 3-36
Recognition 3-40

Summary . . . ¢ . v v 4 v e s e e 4 e w4 .. 3-41

iii

..............

o ,:.r e '.r o ".f ! ".r_' Lol ot ad e .r ’-&" - ‘-r\"_ Lot KRS o RSN G R L (IS (O

" .‘ .'

Yat ‘s L7 LS T T W AN YR

"‘ ™ U 4 W TR i A LA A A, A At AL g At A g gl L a0 a0 he -3'5"’."‘7’2"2?7?7":'7'7

' Page
')

q&f IV. Implementation 4-1

N Software . . . e e e e e e e e e e e e e e 4-1

Program Structure e e e e e e e e e e e e e 4-2

Database Design+ . . 4-5

v SUMMATLY . « ¢ v ¢ o « o o o o o o o o o o u 4-6

V. Test Results ¢ ¢ © © v v v v v o v o o o . 5-1

Effect of Camera Settings on Performance . 5-1

False Alarms and Missed Faces 5-4

» Recognition Score 5-5

! Confidence Level e e e e 5-6

Window Performance Factors e e e e e 5-9

SUMMATY . .+« & ¢ + ¢ &« & + & o o o e e . . 5-10

; VIi. Conclusions and Recommendations 6-1

K Conclusions« o o o . .. 6-1

Recommendations« . .+ . . . 6-1

¢ Appendix A: Equipment List A-1

N Appendix B: Software Listings B-1

4. Appendix C: User’s Manual« .« .« « .« . c-1

y Appendix D: Gestalt Files « b-1

X Appendix E: Description of Brightness Normalization . . E-1

) Appendix F: Scenes Used to Test Face Location F-1

g Appendix G: Fast Gestalt Calculation G-1

. Bibliography ¢ < . .+ .« .+ .« .« . . BI-1

X 12 5 - T v-1
o
L]
N

iv

-

LSRN S e N 4T e T N
N . 5 . 5 5 .

f‘f L L, P - .
~ \ " . “ j
(L S a P, \..l .k NS

La.q.._

' " . W T - g va ac Wy Ta Wig WY e ‘hea g0y 228 52l a8+

List of Figures

T Figure Page
L) ,
2-1 Application of CTT to Speech 2-2
2-2 Gestalt Mapping for Words 2-3

2-3 System Configuration 2-5

2-4 Studio Setup for Taking a Picture 2-7
2-5 Cursor Adjustment on Image 2-8
2-6 Eye Signature ¢ . ¢ ¢ e 4 4 4. . 2-11
2-7 Russel’s Window Set 2-13
2-8 Recognition of Person From Parts of Face 2-14
2-9 Smith’s Window Set 2-16
2-10 1-D Gestalt Transformation Process 2-17
2-11 2-D Gestalt Transformation Process 2-19
2-12 Dimensions Used for Scale Invariance Calculation 2-20
‘\ 2-13 Example of Data Storage in a Recognition Database 2-22
3-1 Input to MTI« ¢ « ¢ « o « e o « o o« o W 3-4
3-2 Scene Subtraction o . o oL 3-5
3-3 Non-Zero Pixels Set to 255 3-6
3-4 Target Mask « . ¢ o o o e e e e 3-7
3-5 Target Separated From Background 3-8
3-6 Example of a Hole in the Mask 3-10
3-7 Three Faces with Identical Internal Features . . 3-13
3-8 bata Available to Recognizer 3-14
3-9 Signatures at Different Brightness Levels 3-16
3-10 Input to Brightness Normalization 3-18
3-11 Output From Brightness Normalization 3-19
3-12 Binary (Light/Dark) Scene 3-20
~ .

.......................

"H(.ﬁf‘- T i - ‘:\f,\ls \i‘f\w_‘_.-%.-._.r_ NS AC NN A AN

3ﬁ. 3-13 Pill-Box Kernel for BLUR

3-14 Contrast Enhanced Face

3-15 An Unacceptable False Alarm

3-16 Result of Facial Feature Location
3-17 An Acceptable False Alarm

3-18 Measurements of Facial Features
3-19 New Window Set

3-20 Window Placement in Gestalt Array
3-21 Output From RECOGNIZE

4-1 AFRM Menu Structure

4-2 Total System Option

o'
e

vi

IS S T T L i S T e SR B RO S

£ S e A T A A Rt P) ‘._'. _'..'- SN '_\ LA SR OV R S A SN

Shad bl a8 et A R0 ek Rt at ath At At ath thiath et alh ath" aka v ata’ aVAt ata’ata’ ule" 198 et Bt 026 2ot 020 208 idot £20 0.0 00 S0 00 4'0 80 8" ‘g A'al’ Sa g ia gt

i)
&

2 List of Tables

A

v B Table Page
2l ",{:.\

2-1 Russel’s Test Results 2=21

“

.: 3-1 Gestalt Values for 2 Window Placement Techniques 3-39
) 3-2 Separation of Gestalt values 3-39
| 3-3 Smith’s Test Results 3-40
o 5-1 Effects of F-Stop, Focus and Zoom on
. Location and Recognition Performance 5-3
-

~

5-2 Face Location Test 5-4

: 5-3 Summary of Face Location Test 65-4
)

AS

N 5-4 Recognition Performance for Single Windows . . . 5-6
b

pd 5-5 Distance to First Two Candidates in List 5-8
w 5-6 Difference Between Candidate 1 and 2 Distances . 5-9
“~

N 5-7 Window Performance Factors 5-10
o 6-1 Output Lists For 4 Images of a Subject 6-4
8 (o

L 6-2 Calculation of Average Position 6-5
2

-

L4

o

"

~

a

N

<

‘.:

2

5

y vii

4

7

J..\J,\’\"u.’_-.\ '.

Ae LIS Pyl e e ey

Chl bl o]

&

q:

Abstract

This thesis evaluates and improves the Autonomous Face
Recognition Machine (AFRM) created in 1985 at AFIT. This
effort involved re-writing the AFRM code in the C programming
language and hosting it on a Micro-VAX II. 1In addition,
several new algorithms were added to the AFRM including:
brightness normalization of input images, moving target
detection, and a new face location algorithm. The results
of this effort include: improved face location, higher
recognition accuracy, and near real-time processing.

This thesis includes a complete description of the AFRM

and its development history.

T R PV

XS ANV S AL

LA A

LN

-

o+ S A RS W N

_ta/.‘.‘

(R S W }

PV S AP |

EVALUATION AND ENHANCEMENT OF THE AFIT

AUTONOMOUS FACE RECOGNITION MACHINE

I. Introduction

Background

A Face Recognition Machine (FRM) was developed at AFIT
in 1985 (Russel 1985). The FRM was based on Cortical Thought
Theory (CTT) which proposes a new model of how a human brain
processes information. Richard Routh developed and presented
CTT as a doctoral dissertation at AFIT (Routh 1985). CTT
proposes that information is displayed as a two-dimensional
image on the brain. The brain then extracts the essential
information (the essence of the image) as a two-dimensional
vector, called a "gestalt". The gestalt is the only informa-
tion that is passed to the higher levels of the brain for
processing (Russel, 1985:3-1 to 3-2). The FRM reduces facial
images to gestalts and then compares the gestalts to a data-
base in an attempt to recognize the face.

In 1986 an AFIT student added automatic face location and
windowing algorithms to the FRM to eliminate human influence
on the recognition process (Smith, 1986). The face locator
was slow and recognition was less accurate because only the
internal features of the face (eyes, nose, mouth) were used,
but the question this student was trying to answer was, "Can

a machine, entirely on its own, determine whether or not a

1-1

.....

- ’ -, N Py et - -t e P - - D e - AL - s T e R =T R I
N N L N T AT AN T N T T e A e L T L T e
N v A i o " g

Lo

.
.

LE S UL R N Y

. .

'y LAl RaSal Sl ¥ atad Sal Ol i Al t i Bl M R At At i B L pha-ata o Rare G i Aat et hed Rab Bam

person’s face is in a picture and if so, can it determine to
whom the face belongs?" (Smith, 1986:6-1). The answer is
"Yes” and the result of the student’s thesis effort became

the Autonomous Face Recognition Machine (AFRM).

Problem Statement

This thesis effort evaluates the AFRM location and win-
dowing algorithms with the goal of improving recognition
score and speed. Both the score and speed were reduced with
the addition of the autonomous scene analysis (location and
windowing) algorithms in 1986, however human influence was
eliminated. The goal of this effort was to reduce the 5 to
30 minute scene analysis time as much as possible while
bringing the recognition score back up to at least what was

possible when human influence was allowed.

Scope

Improvement of the windowing algorithms should improve
overall recognition accuracy. There are several windows on
the facial scene that will be tested as possible replacements
for the windows that have little affect on the recognition
score (Russel, 1985:6-11, 8-2). Going back to a whole-head
approach used in 1985 should also improve accuracy over the
internal feature approach now used (Smith,1986:6-2). The
only reason internal features are now used is the inability
to separate the edges of the head from a random background.

This thesis investigates two possible solutions to this

1-2

. owt
et
)

-

]
“ “a o S

L AR Sa 20 o _oc o

- -

t2

l" \
o?

’I\/"'-\ 4. ‘ ‘:-_J:-";‘ (il TS .. -'\ ‘ q' -f\". -V"-'r . ’\"-" 'x'n". f\\(’ kL '\ \- -_-_~_~'_ w

ol Vel sl vag g Y SV Wy AT R W TR N AT vy ™ v PR LA A At A ath gl atd

problem. The first is to apply an elliptical mask to a scene
centered around the location of the face with a size propor-
tional to the size of the internal features. This results in
a larger area of the face being made available to the recog-
nition algorithm. The second solution is to apply a Moving
Target Indicator (MTI) algorithm to a series of input scenes
prior to scene analysis. This may allow better detection of
the edge of the head.

Improvement of the location algorithm may speed up the
scene analysis, however the major improvement in speed will
be gained by re-hosting the AFRM on a new Micro-VAX in the

Signal Processing Lab at AFIT.

Assumptions

The assumptions from the past efforts (Smith, 1986:1-5)
that remain valid are as follows:

l. In any given picture the subject(s) are looking
squarely at the camera (there is no tilt or
rotation of the head).

2. The subjects are not wearing glasses and have
relatively relaxed expressions (the face is not
deliberately contorted).

3. Four pictures for each subject are sufficient to
characterize a person in the database.

4. The basic CTT algorithm used in the AFRM is valid.

There are no assumptions about the contents of scenes fed
to the AFRM. 1In order to be autonomous, the AFRM should be

able to process a scene with a random background.

-J'It.(‘.f

a

»

1,

in the past thesis effort (Smith,

Standards

Test results must meet the same criteria as set out

1986:1-5 to 1-6):

The system must demonstrate "human like" classi-
fication of human facial images.

2. Recognition performance must be as good as that
obtained by Russel (Russel, 1985:6-9 to 6-13).
' 3. No operator intervention is allowed in the face
M location, windowing and recognition processes.
. 4. The system must be able to process pictures with
. multiple (at least two) faces in them.
L Approach

The approach used was a top-down conversion
- software from the Data General computers to the
VAX computer. As software was re-hosted it was
compared to the original results. As algorithms

transferred, enhancements were made and tested.

of the
new Micro-
tested and

were

. In most cases the software had to be re-written using

only the ideas from the original system because

a different

-«

o

- language was used and because the extensive communication

5 requirements written for the two-computer configuration
were no longer required.

- When the AFRM was up and running on the Micro-VAX, the

r database was trained to test face recognition accuracy with

d the new facial windows and gestalt calculations.

S

" 1-4

N

L}

»

N

I e PR L] D R D L L I U L TR Y R A S, et e e etatetat

RN R V) AT E RN LANS IRV, UL ia a'g o'd o9 a- - §a8 b 8, 4 vaf o tal date ab td) o ‘Ava A,

‘

. Thesis Structure

SRR Chapter 2 gives an overall description of the previous
AFRM hosted on the two Data General computers. A review

of some of the literature used to support the development of

>
~
-~ this AFRM is presented.
Chapter 3 evaluates the AFRM and describecs enhancements
made during this thesis effort. A review of the literature
3.
b used to support the development of these enhancements is
presented. Chapter 3 topics are in parallel with Chapter 2.
s Chapter 4 describes how the algorithms that make up the
N
N AFRM have been gathered together into a complete program and
g implemented on the Micro-VAX. Although the structure of the
o
;: AFRM is described, operational details have been left out as
% use of the AFRM is covered separately in the User's Manual
B (f{ appended to this thesis. The design of the database is also
; covered in detail in this chapter.
v,
- Chapter 5 presents the results of testing performed to
verify the proper operation of the AFRM and to show the
a
<
.~ differences made by the various enhancements.
¢ Chapter 6 contains conclusions based on test results
4
and recommendations for further tests and enhancements.
.
¢
(v
X
Cad
v
d
Yo,
. e
5 1-5

«* o et W, " B J‘.'-- o R AL PR S S S R e IR BRSPS L Sy N S Tate ot - - st e"
! \\ ~ ~ Wt . N A e T T e e e PR L B T R
f‘f.f} -n‘-.& LA\AJLAAJ‘.{MJ Vg kY v - . =~ * * et e e "

2 ole Jta uiy ot AAS 88 aTRiata" a¥a 218 atat kv ata aVAY g agat dat Ry 0y ¥ 228 :dat dad a0’ 458 Bradve gt 'V va gla

[
N

’

L3
) » PN . .

i Tﬁb I1. Background of the AFIT Face Recognition System

[~

L* This chapter presents an overview of the AFIT face

N}

»\ recognition effort prior to this thesis effort. First there
5!

. is a discussion of Cortical Thought Theory, and then a des-
fﬁ cription of the face recognition system. Some parts of the
.

-

:j face recognition process have been described in more detail
- than others so the reader will be prepared to evaluate the
- enhancements discussed in Chapter 3. The parts of the AFRM
i that are not affected by this thesis are only breifly dis-
v

b cussed here. These areas are covered in detail in Russel’s
1
-3 thesis (Russel, 1985).

s
-

M o Cortical Thought Theory

¢ T

:¢ Cortical Thought Theory (CTT), developed by Capt Richard
-~

2> Routh, proposed a model of the human brain that was based on

o

; primitives of analogy as opposed to primitives of deduction.
Ll

Y
:: Routh described how primitives of analogy could be used to
-:\

- acheive human-like classification of data and human-like
'\

) recall or, "direct memory access" (Routh, 1985:40-42). The
Sﬂ classification, or single unique identification of an object,
ii was called the "gestalt" of the object (Routh, 1985:2,3,39).

o
,g The direct memory access ability comes from the technique of
.

;ii mapping gestalts onto the surface of the brain. The gestalt
'as itself provides the location on the cortex that can identify
» the input data (Routh, 1985:96-97).

o
< 2-1
3
N
rl
"-.

‘.

~. - - - B a 0y - . - - - - . - - - . .
et S LA A A PN A 1 e N N L R e T P e e
. A . N N M by R) N v . . » » -

Do YA

The scope of Capt Routh’s dissertation was to find a
gestalt mechanism that was reasonable for the brain to accom-
plish and that was in accordance with what was known about

the neurophysiological structure of the brain (Routh 1985:3).

As part of this dissertation, Routh demonstrated his gestalt

mechanism by applying it to a speech recognition problem.
Figure 2-1 shows how an audio input was transformed into a
gestalt value that identifies the word being spoken. Over-
lapping time slices of the audio input are transformed into
gestalt points on a phoneme mapping surface. These points
taken together as a "phoneme track" are then transformed into
a single gestalt point on the word mapping surface. This
demonstration showed the "human-like" classification of

inputs that Routh was looking for in a gestalt mechanism.

Word Surface

W
/L/,-L
Location of word

Primary gestalt (ident-
Audio Cortex ification of
word)

Phoneme track

0g-log mapping
of magnitude
spectrum of audio

Figure 2-1 Application of CTT to Speech (Routh, 1985:156)

Figure 2-2 shows the separation of unlike inputs and the

? a3, grouping of like inputs at the word mapping level. The
N,

speech recognizer also had the "human-like" recall ability

L

. required by CTT. The output of the recognizer was simply

sr

¥ the closest word on the word mapping surface.

| In 1985 Robert L. Russel applied CTT to the problem of
L face recognition (Russel, 1985:1-2). The results of Russel’s
.E work, "increases the credibility of CTT as a model of human
‘ sensory processing” (Russel, 1985:7-4). 1In 1986, Edward

v

y Smith added an automatic face location algorithm to Russel'’s
;: face recognizer to make the recognition process independent
fw of operator influence (Smith, 1985:1-4).
\:

~

"

)

'H
N

-

' -39
; SASS
v SASH3 SASH1 -

N ASH SASH2
10T
zf 37
= CcoT2 | COT3

- COT1 | cop
. HELM BELL ~-36

«: ELM3

) ELM]

3 ELM2 -35
o

—%' 1)] L1 1 I 1 g 1] T T

N 34 35 36 37 38 39 40 4] 42

>

<

.

Figure 2-2 Gestalt Mapping for Words (Routh, 1985:168)

2-3

No anagiat . « oy €l dad Vol ad TP Y RV RN &0t Rt baaea’ .. ‘el ath a'h atd ath

The Recognition System

v The following sections describe the AFRM and how CTT is

e av

implemented in computer software.

System Environment

PLA IS

The AFRM was created using the two-computer configuration
shown in Figure 2-3. The equipment is listed in Appendix A.

The Nova computer was used for image acquisition and display,

P A

and the Eclipse was used for the large amount of numerical

processing required by the gestalt calculations. The two

computers shared a common disk drive and communicated via
P flag files stored on disk. 1In many cases these flag files
existed in name only to tell one computer that a process was

finished on the other. 1In some cases the files contained

FREPLERE A R)

data that was to be passed from one computer to the other.
‘l? Software for the recognizer was written in Fortran IV and
Fortran V and extensive use of subroutine swapping and over-
g lay techniques were employed due to the small main memory,
approximately 28K bytes, available for running programs
! (Smith, 1986:4-1 to 4-4). Descriptions of the Eclipse and
Nova top level programs and flowcharts are given in Chapter 4
of Smith’s thesis and in Appendix D of Russel’s thesis.

> Image Acquisition and Preprocessing

The equipment shown in Figure 2-3 was used to acquire and
- process images. The Octek 2000 video processing board con-
nected to the Nova was used to acquire four-bit images from a

black and white video camera. Once acquired, an image could

be stored to disk, displayed on the monitor or printed on the

Pyl
.

-tato
o

2-4

P)

..,-q~».~ q"u"

. N et T T T T N TN e e T N N T e ."*.“..,‘-_'. '.\ S > \\'\- AL TN '-.‘-‘
*x S T VA I P R T A T T N T s ._:1

e
0

wh30)
D211 Y
XinOBsR 2L

(£-6:6861 ‘Tossny) uorjeanbrjuod wajsks -"¢g-z 8inbta
avgarIn NYIL
ANnoY HINay

_ﬁ

000y

L LRI

Li-w

wwavdy [

(YR |
ARMIVIH

SIMBQ wsIQ

P LA L IVE Y
ﬁ@ QNIHOYYY Ivg
RN,
(222)

.

Y MivQq

- —_ NOWWG)
Oll\'— _;cz(,_A . vﬁMw_ EITLME!

IANVA 34vi
O)e

WiNRE
LE¥3T1Y
T yiOQA

. - C A e -

I e

2-5

A

-

'-—.'\ e

STy Tte

S co T
A

-
P

"

-

.‘_‘f__-'af.'-".l ‘-

s

A ARNP,

- . T 1% < e . afite - 2R el
RN v A it g 00 ot ot A gt A gt W w ¥y, g - AR AL aAe i gl gl AR o -V «

video hard-copy unit. 1In Russel’s thesis, image acquisition

,\

Jj
Pﬁf\.'
[

was accomplished with a fixed camera setup and layout. This
layout is shown in Figure 2-4. The L :ckground was a plain

piece of cardboard and the camera had to be calibrated to the

el

brightness of this board (Russel, 1985:C-1). After taking a
picture, the user provided the computer with the coordinates

of the face by manually adjusting a box-shaped cursor around

PO

the subject’s head as shown in figure 2-5 (Russel, 1985:B-9).
In order to recognize the face, the computer had to divide

the face into several separate windows. This windowing

‘;'u‘v‘\ LR

process is described in the following sections. Success in

i locating and windowing the face depended upon the contrast

D h T 2 4

found in the scene and so the input scene had to be pre-

.

processed to obtain a constant contrast value.

L35

Preprocessing consisted of a contrast enhancement al-
gorithm that sampled the pixel values in the center of the
face and adjusted the contrast of the whole face based on the
. average of the center pixels (Russel 1985:5-7,4-22 to 4-27).
In Smith’s thesis, images were acquired using the same
- equipment Russel used, but the setup shown in Figures 2-4 and
2-5 was not required. 1Instead of providing the computer with
. the face coordinates, the computer ran an automatic face
location algorithm. The only requirement imposed on image
acquisition was a camera calibration (Smith, 1986:B-6) and
. the background was allowed to vary.

Success in locating and windowing the subject’s features

- still required a constant contrast value, so Russel’s

2-6

TANA

LSRR
$-1'.f_..4 \'

- _w - .
RO

ST A LS T T et .

PR S i Pt I TR e
'f_’f . n‘"‘l _""‘, "‘.:Q"s{' E o

At

A48

.........

.......

(p-5:686T7 ‘Tassny)
ain3o1d e butyel 103 dnjas orpnis "p-T ainbtyg

o

b

XX

J

A0
ol

LA,

A

.

o

-

v Pl i g B « . r

YRR (JONRETRS - AAEX)

.

T T T 20 TR
x_0

2-7

T

)

e

o
A

S

.

~,
.
v e,

ST ATy

‘- .'.4
N Y

T T, T T
AL
N S R

(6-g:6861 ‘Tossny) sbewI uo juawisnlpy 10sin) ‘G-7

ainbtg

T
o

NII¥08

NO FOWWI!

arin 01 Q34SNrQy
yosyny xod -

yoLINOW —*

-

L Y

w v N v e s =

PR R K R

R R N

L5 NS

2-8

--‘-.\ WY ™

AN AN AR

LIPS)
'

\f’q‘-

-
¥
-
-
-
3
.
-

contrast enhancement algorithm was still used. The algorithm

B P T SE————

SN was applied to the scene after the face locator found most of
the features of a face, in order to help it find the rest of
the features (Smith, 1986:3-19). Then a slightly modified
version of the contrast enhancement algorithm was applied to
the face to improve the accuracy and repeatability of the
windowing and recognition algorithms (Smith, 1986:4-15).

Face Location

There are two requirements of the face location algorithm
used in the AFRM. The first is to ensure that only faces are
passed to the recognition algorithm and that all other parts
of the input scene are discarded. The second requirement is
to find specific features on the face that need to be used
by the windowing algorithm.

In Russel’s FRM the first (face location) requirement was
met by having the user position a block around the face as
shown in Figure 2-5. The second (feature location) require-
ment was met by using an automatic feature location algorithm
(Russel, 1985:5-40). The accuracy of the feature locations
were dependent on the contrast of the input image, the set of
rules within the location algorithm, and sometimes a manual
correction entered by the user (Russel, 1985:B-23).

In Smith’s AFRM the face location requirement was accom-
plished using an automatic "facefinder" algorithm. Feature
location was accomplished as a part of the face location
process. The facefinder works by searching an input image

for certain facial characteristics called "signatures”. The

2-9

.'_.',-'.' _--.4‘7,'.'...-‘.'- ‘e . I e C I SRR R ST S S T SR T UL RS URL R S
ISR A NS G P T U T U T A A U, Y, R TV T

’
0]
-i

oot %

I

L N]
g .“'n’) 2 ./

SRR

",.

e

. » . -.
e eSSl Ty

- ¥ ¥

NN

LA SR O N O |

s s W W ST

P A
& e

e%efs s a1

Pl

et
.00

4 4%
LA .

L}

45 YS

Al

facial signatures are present in most facial images and are
rarely present when no face is present (Smith, 1986:3-1).
Smith presented test results in Chapter S of his thesis that
show how "face specific" the facefinder was.

The facial signatures are made up of the brightness
variations in a scene that are consistently found when a face
is present. The "eye signature” is made up of the three
brightness maxima found around the eyes (one between and one
to each side of the eyes) and the two brightness minima found
in the center of the eyes. Figure 2-6 shows that these
maxima and minima form a characteristic "W" shape when the
brightness on a line through the eyes is plotted. Smith also
defined a "nose/mouth signature" (Smith, 1986:3-14).

The development and calculation of the facial signatures
was based in part on similar work (Bromley, 1977) in which
specific features in mug file images were located using a
signature technique. The signatures were generated by adding
pixel values in each column of the image and plotting the
results. Characteristic maxima and minima appeared at the
center and edges of the face (Smith, 1986:2-6). Smith
generated his facial signatures by extracting columns from an
image and plotting the results of a one-dimensional gestalt
calculation for each column (Smith, 1986:3-12).

After convolving the signatures with a gaussian function
to smooth them, Smith applied a set of limits to determine
if the signatures represented a face. The limits defined

allowable variations in maxima and minima, the maximum

2-10

-

e ‘-' -

ainjeubts 8kg -g-z ainb1g

RLAANAR AL P T2 " R TRV L v-(—gi e dn K.i ..»19.:"\.-.)\0*.\{; P

\...;\r\.—i

2-11

ST R

o
Dy

L)

SN LN S

’
-

K

t- “w .!
T

"

distance ratios between various points on the signature, and
iﬁg the maximum variation of the slopes between maxima and minima
(Smith, 1986:3-14,4-12).
Windows {
Once the features were located, the face could be divided
into windows. "Windowing” the face, or looking at small
pieces, was required to separate similar faces and because

the gestalt calculation had trouble with symmetrical faces

(Russel, 1985:4-15 to 4-19). Russel used the following:
1. Left Half of Head.
2. Right Half of Head.
3. Right Side, Top of Eyes to Chin.
4. Right Side, Top of Eyes to Mouth.
5. Right Side, Top of Nose to Chin. .
6. Right Side, Top of Head to Bottom of Eyes. ‘

These windows are shown in Figure 2-7. Russel selected these
windows based on the following research.

1. Russel’s experiments with the gestalt calculation
on whole faces showed that it could not distinguish
a wide symmetrical face from a narrow face. The .
gestalt calculation is basically a center-of-mass)
calculation, so for symmetrical faces the center of
mass always falls on a line drawn vertically 9
through the center of the face. By gestalting the X
two halves of the face separately (windows 1 and 2),
a change in the aspect ratio of the face will cause
a change in the gestalt value (Russel, 1985:4-16).

2. Russel’s literature review discusses the following
experiments on human face recognition capability.
Figure 2-8 shows a study of the ability of humans to
recognize a face when shown only a part of the face
(Goldstein and Makenberg, 1966). Some parts of the
face yeilded higher recognition scores than others.
Another experiment measured the number of times a
baby looked at different features on its mother’'s
face (Haith and others, 1977). Some features were
used much more frequently than others.

] ...' ls
et

2-12

BLPN, N & W

e A gl S g L L, L LA AL

(z€-8:G86T ‘12SSNY) 1325 MOPUIM S,

—-

(B2412)

(BEYET)

19ssny (-

(PP

Z 2anbta

T ARSI 9 L, T a" "

[R T T W Yogd

2-13

._(._-._4' e, A

5.:-

A -

NS

TR A

W0e

“pne
RS

’Gf o

‘e
¥y,

[7 M 2

Sl LA

LS

L

[N Y

. -
>, PAL

3

OO0

)

o

AAS

S

VoL st el

‘ol ’.‘ '!' 'l. A

Fig. 1. Schemgtlic represenialion of cipefimental cuaditions. \n
opague mash was used o ucriude (misshaiched sections. Yymmet-
ticai fedatures, such as Cund. (I, were randomiy raried 0 wampie

.

.-‘. left and nght sides)
i
¢ : '
¢ 3 : i
w ¥ H ”
L 3 LI B
|
! J«}
| it
3 % &
- b
E 3
b4 b
x » ;
’”x :
1= "
N] : ;
i . H 2 L] 14 b [! - [L L)
Fig 2. PPer cong coerect adengilications by khidergarten (ko firsg
(1) and Nifth (3) grade <uhjrcts on condition \ ta \].
Figure 2-8. Recognition of Person From Parts of Face
{Russel, 1985:2-19)

2-14

S

‘.l

v i
':"I“

¥ r's

- . 'l
- 4‘‘.1.

N ‘."‘,.",."_-_. K A ol ..“_.I',i' 5

W

OISR

[P 40 An

NN

A hcv YN

AN

\"'n"-"'.

. e

Smith used a different set of windows because he had

less feature information available. The facefinder was
based on signatures that located the internal features
only (eyes, nose, and mouth). Location of the edges of
the head could not be obtained because the background was
no longer a constant value. Figure 2-9 shows the set of

windows selected by Smith.

Gestalt Calculation

The gestalt transformation is the heart of the AFRM. The
results of this calculation provide the data needed to recog-
nize the faces in the input scenes. Chapter 4 of Russel’s
thesis discusses the original gestalt transform (Routh 1985),
and how it was modified for use in the FRM. The gestalt
transform is basically a center-of-mass calculation where
mass is represented by scene pixel values. The darker the
pixel is, the more mass it has and therefore dark pixels will
have more influence than light pixels on the location of the
center-of-mass (a negative of the image is used so that the
dark pixels become the larger mass values).

Figure 2-10 shows how a one-dimensional (1-D) gestalt
transform was implemented. A point-by-point multiply and add
(dot-product) was calculated between a gaussian function and
an input waveform (2-10 b,c). The result was one element in
the output array (2-10 d). By shifting the gaussian to the
left and taking the dot-product again, the next value in the

output array was calculated. Figure 2-10 shows the gaussian

2-15

(Z€-€:986T ‘Y3aTws) 3IaS MOPUTIM S,Y3jtug "6-7 3inb1d

m
M
i
3
b

2-16

LR o R i A I

& 44 4 A

N R

AgS

a

“is

ARRAY VALUES

1 ny ¥ e 727
ARRAY ELEMENTS

Q. GESTALT TRANSRORM COEFFICIENTS ARFAY
GENERATED BY RTRANSA

oy 12?7 33 oY §% 2

b. TRANSFORM COEFF/ICIENT ARRAY

e e

¢ /NPUT SIGNAL ARRAY

d

1 32 64

oY

[

o 2-D CESIALT TRANSFORM OutPyI OF RTRANSB
(POINT BY POINT MULTIPLY + SUM OF ARRAYS
N PART B ANO PART .

Figure 2-10. 1-D Gestalt Transformation Process
(Russel, 1985:5-43)

2-17

%

LAl

.l"-'..'..'..'.-

-

fl '.l

(4

Y¥Non

a4

B P R i

PN

Lah

s

A
-

GO

. Ty

LY

¢

L L) LR T LI Ve TR Sl MR W U NAY S Tl Sl
e IS et -_.?-_.‘ IR RN A e e LY

.'\3. Y Al Bk’ . . v -t . . o * gRae o Snr.Aat J

function used for calculating three elements (1, 32, and 64)
of the output array. To calculate the gestalt for a 2-D
image, the 1-D transform of each row of the image was cal-
culated. The resulting arrays became the new image and the
1-D transform of each column was calculated. The gestalt
value was the location of the maximum value in the resulting
array as shown in Figure 2-11 (Russel 1985:5-42 to 5-46).

A final operation was performed to scale gestalt values
to make the FRM size-invariant (size of face was allowed to
vary). Figure 2-12 shows a window that was placed into a
64X64 array and gestalted. The scale factor (SF) applied to
the gestalt value was the maximum scale factor that allowed
the window to remain in the 64X64 array (Russel, 1985:4-10).
The final gestalt value was calculated as follows:

SF = 64/A where A = max(X WINDOW, Y WINDOW)

Final Gestalt (X , ¥Y) = (X’ * SF , Y’ * SF)

Recognition

In order to identify and pull one face out of a group of
faces, the AFRM has to be trained with the whole group. This
was accomplished by setting up a database of gestalt values
for a group of people. The database was loaded, "trained",
with the gestalt values from 4 images of each individual.
When a new face is entered into the AFRM and gestalted, the
gestalt values are compared to those in the database. The
name assigned to the new gestalt values is the name belonging

to the closest set of gestalt values found in the database.

2-18

N R AT T SN M

e

y
&
s]
2
n
N
f/ > iy
- -
f—
MY -
N N -
-t
1 /
i~ N =7 o
' X] o
- o. GESTALT TRANSFORM OF ROWS (RESULT
- SUBSTITUTED FOR ORIGINAL IMAGE)
"
40
N L348811 1
X b GESTALT TRANSFOAM OF COLUMNS OF
PREVIOUS ARFAY
- A Y LOCATION OF
- T = —— PLANr GESTALT
VALUE
%
2'3 C. EXANALE OF RESULTING TEANSFOEMATION
v
X Figure 2-11. 2-D Gestalt Transformation Process
({Russel, 1985:5-45)
2-19
N e T A S L o A e Qe e 3

.....

R
~
k]
(Y

e . 6

N e Y WINDOW +
=, /
" p— X

L GESTALT
o

: [N : OF IMAGE
'l
Z

Y WINOOW w— IMAGE

~ 64 x 61
. PIXEL
- ‘ ® ARRAY

Figure 2-12. Dimensions Used for Scale Invarience
Calculation (Russel, 1985:4-11)

2-20

N e e e a - e e s e et - Gt et e . I I
- > W - R L. R . P S I C e e
\f‘.f&.:.r".- ol T A N T T , ¢ s o 1] i

»
13 1f this name is correct then the AFRM has recognized the
s S individual. Sometimes the first choice is not correct, but

the AFRM is usually close. By rank ordering the individuals

\D

A in the database from closest-to-the-input to farthest-from-

N .

‘5 the-input, a measurement of the "goodness" (Russel, 1985:2-3)

o of the system can be made. This measurement, called the

.5 Average Reduction in Uncertainty (Russel, 1985:6-8), tells

\2 how close the AFRM came to identifying the face correctly.
Table 2-1 shows Russel’s recognition results. With a data-

-

t base of 20 individuals, a 99% reduction in uncertainty was

)

(s obtained.

B9

'? Table 2-1. Russel’s Test Results (Russel, 1985:6-9)

»

} Number in Database: 20

' Number Recognized as lst Choice: 18

. {® Number Recognized as 2nd Choice: 1

s i Number Recognized as 3rd Choice: 1

- Absolute Correctness = 0.90

[Average Reduction in Uncertainty = 0.9925

-

,: In order to achieve "human-like" recall capabilities,

; the database was setup so that gestalt values would directly
. provide the name of the individual in the input image. The
'? structure of the database is shown in Figure 2-13. Since the

&' training for each individual was done with multiple images

4 (up to 4) there is an area on the surface of the database

S

:j structure where each individual could be mapped. Instead of

.

:1 mapping the individual into more than one coordinate location
Y

. the AFRM trains only one location with the individual’s data.
LIS

| '; .7

AR 2-21

(1€~p:586T ‘T9ssny) aseqejeq
uotrjtubooay e utr abeiojls ejeq jo atdwexm "g1-7 @inbriy

A3a ais *A
A0 QIS x A
Zm a1

. Aga1s ‘& A30 01 YA | A30 Q1S A
A0 01S 'x N30 0is ¥ | Aagaus *x

Is QI yw O/ Ew O/

.....w

.. Oc ‘s o5 82 o€ ‘€2 O 27 a1z /. ~ m.“
o~ N

& N

..\mww.w\ : \ \ \ mw.\w\.- \,
82 52 \ \ w.w»w\. .-
') _

SNOILVIOT g
FLYNIGY002> e

The data includes the size of the area that this individual’s

S gestalt values are spread over (as X,Y standard deviations),
AR
- and the individual’s ID number. Now by combining the six
: window gestalts into one coordinate location and searching
\
N for ID numbers within a specific range around this location,
7 an ordered list of names is generated. The recognition time
o
y is fixed by fixing the size of the searching range. Russel’s
by thesis gives a complete description of the design and imple-
' mentation of the database.
-
N Summary
This chapter presented a review of past face recognition
3
- efforts at AFIT. This review should give the reader enough
-i background on the AFIT face recognition system to understand
(: the evaluation and enhancements presented in Chapter 3.
L]
~:
.
-
<
-
%
N
\
‘A
'
¢
'l

A

AR . D P R e L e e e T T, T / SRR N St
- - - . - . S at "— . - - '.. . KIS >~ P Fd =T - . W rd --- . .-. . ..- .- o R --' .) -~ - ._~ f. --~ ..- _-. - - . e NEEN _-. . N -
{_L{A.;._-. P PR ..",_‘ A AR S A AL A, Y NV U TRV T TR WA TRV TR T U s T T

§ea b ia g gt a0 el B Gl ‘e’ i Al hab R “ab agra g e A B R la® bat A\ fia® " aliat M Ra*afl *aBl” AL g A ahd oS 'l

- W

III. Evaluation and Enhancement

.‘S'l,
R

- This chapter evaluates the AFRM discussed in Chapter 2
N and presents enhancements made for speed and accuracy. The
. sections in this chapter have the same titles and order used

- in Chapter 2.

System Environment

Re-hosting the AFRM onto a new computer system was an

important part of this thesis effort. This was required for

WA AT

several reasons. First, the Data General system shown in
Figure 2-3 has outlived its usefulness to AFIT and may soon
I be removed from the Signal Processing Lab (Kabrisky, 1987).
Q’ Second, the memory limitations and communication problems
within that system resulted in slow-running programs and
complicated programming techniques. Third, a new environ-
, ment was needed to allow some of the enhancements added as

part of this thesis effort.

ik
PR

A Micro-VAX II computer in the Signal Processing Lab met

3

all the hardware requirements needed by the AFRM including:

Memory: A 9MByte main memory, Three 71 MByte hard
disk units, and a TKS50 tape drive.

L AR QPP

Image Processing: An FG-100-Q Image Processing system
{with software library), and an RGB monitor.

Ol

< Software: MicroVMS 4.4 operating system, DECnet,
VAX Fortran, LISP, and C.

P M e

Access to: A Video Hard Copy Unit, Printers, and
i an RS-232 connection to the Data General.

s
Il

RV

5 3-1

.. s . <~ " TN > T 0 DD IS D St
- - m L)

LS)

el o R A]

[o

Choosing a software language was based on minimizing the
effort of rewriting the AFRM (by using a similar language),
and allowing easy interface to the hardware components. Of
the three languages available on the MicroVAX (Fortran, C,
and LISP), Fortran and C were chosen as the easiest possible
replacements for the Data General Fortran IV and Fortran V.
C was chosen over Fortran because the software library for
the image processing board on the Micro-VAX is written in C

and extensive use of this library is necessary.

Image Acquisition and Preprocessing

In order to recognize a subject, the AFRM must be given
an image of the subject’s face with no significant tilt or
rotation of the subject’'s head. With no other constraints
imposed on the image, the AFRM is required to locate and
recognize the subject. 1In crder to help the AFRM accomplish
this task quickly, accurately, and consistantly, several
preprocessing steps can be performed on the input image.

Moving Target Indicator.

In Russel’s FRM, the user was required to identify the
location of the face by positioning a box-shaped cursor on
the video monitor. The only part of the image used by the
FRM was the part inside the bex. Smith provided the whole
scene to the AFRM and added an automatic location algorithm
to locate a randomly positioned face in a random background.
This location algorithm could take anywhere from 5 to 30

minutes to find the face in the scene (Smith, 1986:B-9) and
3-2
e RTINS

-,
YA Met,
,,,,,,, W T

el e
» .
N

N
Y

A
“ o

..
s %

’\ "L‘.l.l’ L ?- "'. ‘,l) d

»
» P
Pl e s c a

-~

) "J }"_'&)‘.)‘)

s -
SN

rl

s

SERORAE

.~l"‘

JEACH YN

-
P A

-

"'."v 4N

PERLACA

RAY

™S ~

R T A P S T e L P T T e e et e T AR A A T T T e T el T e e e Ve e T Tl
‘ o 'V"-.*. n AT .’ﬂ\f ol e AR _..\.-_‘.,_ R A S N AN . . IR

could not separate the edge of the subject’s head from the

background.

As part of the thesis effort reported here, a moving
target indicator (MTI) algorithm was added to the AFRM as
the first step in processing the scene, with the following
assumption:

Faces may be present on moving targets but

are never present when there is no motion.

(The motion must occur between the acquisition

of two consecutive scenes and the user will

be allowed to bypass the MTI step in order to

process previously stored or "still" photos).
Using this assumption, the time required to locate a face
would be greatly reduced by searching only a portion of the
scene. In addition, the MTI algorithm might enable the
separation of the edges of the head from the background.
Figures 3-1 through 3-5 show how the MTI works. Figure 3-1
shows two scenes, one with a subject and one without. The
top of Figqure 3-2 shows the result of a point-by-point sub-
traction of one scene from the other. At this point the
presence of a moving target is determined. The location of
the target is the location of any non-zero pixel values in
the resulting scene (everything described so far can be
accomplished in less than one second). In Figure 3-3 a
block has been drawn around the non-zero values and all
these values have been changed to 255. This shows that
some areas of the moving target had pixel values equal to
the values in the background (holes) and that video noise
in the backgrounds did not allow the backgrounds to cancel

out (leaving spots). 1In Fiqure 3-4 all the holes have been

3-3

ILW 03 andul -"1-f 21nbta

e otw

(/\\\._

N e

Y Yotr.,;

Lyl
o 90

_‘. - }..—.Miu.w.....'

"

PN Y W R W WY

uot13oe13qNg JUIDS "Z-f aanb1g

N Q..‘.

PR R N

o e e e n

/(/*\\.]

- ve oW

3-5

Y W RO \

2 GGz 03 19§ ST9XTd 019Z-UON "€-¢ aanbt4

3 J—
: ‘ -—ve v
; B!
4 Y
, .
»
A
a
-
-
-
h B .
P rl”!.ﬂ .l!-‘-
. bt ‘220 ¢« 50
N Sy oY RARKEAL DOONECE SIS (XA AR AP LR
- . 5y .3 Ko e e o M 1 g tt A A al2 s n s y

3-6

1’~
o

e
VA

A
»

o
9

, -- ’:.

ST

0
B\
WU

YSeW

bra
in
‘p-g °

bieyg

19

punoibyoeg woid pajeiedag 3sbier °“G-¢ ainb14

/,(‘\\..

IR . 37! .
h' <~ oA
m. ‘ .

Mty

[

L R A
PSS AL,

filled and all spots eliminated to create a target mask.
Figure 3-5 shows the results of a point-by-point logical
AND performed between the bottom scene and this mask. This
scene becomes the input into the AFRM face location
algorithm. The results of testing the MTI are as follows:

1. The AFRM face location time has been reduced by
a factor of M because it only searches inside the
block.

M = scene size / block size

2. The AFRM does no further processing on a scene if
there is no moving target because the scene has
been reduced to zeros (it can operate in a loop
until a target is found).

3. Most edges of the head are closely (but not exactly)
determined, but nothing is known about the bottom
edge because the subject’s body is part of the moving
target.

4. All the holes in the mask (for this first example)
were completely surrounded by a white area and so
it was easy to determine what to fill in. Figure
3-6 shows a second example where a hole in the mask
is at the edge. There was no way for the computer
to decide whether this was a hole or actually the
proper edge of the moving target (look near the
hairline). 1In this case the random background
matched a small region of the head causing its
elimination from the input scene. This randomly
occuring and undetectable event may result in an
unrecognizable face.

Because of these results, in the present AFRM the MTI
algorithm was implemented only to speed up the location of
the face. The processing of Figures 3-3 and 3-4 had to be
replaced by a more consistant method of determining the
edges of the head, and the option of skipping the MTI

altogether was provided to allow still photo processing.

The software for the real-time subtraction 1is called

3-9

A)

NN A N N N I A I S LN

Pl i

Rt il

at AL A

-.

B

+ %
L%

QP ._-'."‘ R Y g LRI LR AN RO O OO
. 3 | 3 - L L) w

-

LA TAT T e T LAY

Al ath aid ot Rl gl b gty Lt afih ot SAR R ok " A= AR A i\l SRR AN P Lt WL o, v-;'-‘vkv';ru Mo’

Figure 3-6. Example of a Hole in the Mask

3-10

&R S T T
A"

AN .

CVals - .;\\-. BREER LR Gl

rarrm ma A

V
1
i
1

SUB_DEMO.C, and for detecting and isolating of targets, is

Ll W N g A S

;pﬂ

called MTI.C. This software is listed in Appendix B.

»

Elliptical Mask

The maximum information that can be provided to the AFRM

"o -
-Tw e BR_S

for recognition of a subject’s face is a frontal view of the

L%

subject’s whole head. No information from beyond the edges

4

of the head is allowed because this information comes from an

'

rrs7z

uncontrolled background. The MTI algorithm can separate a
moving target from the background, but it is not quite good
enough to use with only brightness values from a black and
white image. Smith chose to provide only the internal fea-
tures of the head and this resulted in a lower recognition
accuracy. The technique presented here, called an elliptical
mask, is designed to provide the recognition algorithm with
. (:‘ an approximation to a whole-head view of the subject (provi-
ding less information than the whole-head approach but more
information than the internal feature approach). The goal is
- to give the face recognizer as much information about the
g subject as possible without adding uncontrollable background
' data. In order to create an elliptical mask, the following
assumption is necessary.
The head is elliptical (available software allows
easy creation of only ellipses, circles or rectangles).

The size of the head can be approximated if the size
of the internal facial features are known.

E PR

.
)

Using this assumption and Smith's automatic face location
algorithm (to find and measure the internal features), the

size of the subject’s head is approximated. An ellipse of

e s et et a .
------ v

-

T R N R e R A O T Sy g A N T NG
*’:.r P A s £ ("J‘.' TR .r\.-"-r“'f o T OO

W)
".:';'I T

$I

.
A

L A
»
.I.

-

.l:',l.'._
L,

g R

2

N s
aNy,

)

. ':."t." s"s"‘.

|
R

Iff,:l‘

.
L'!.‘::".'-‘.

3

o,
o

¢

I B el | walk saw -alh. » " Ty
Wy W W W A o RN N P it e d e g ; PR . A Vil o9t Sad ?of

this size is drawn around the face and everything outside the
ellipse is cleared to a constant brightness value. This new
image is fed into the recognition algorithm just as Russel
did with a whole-head on a pristine background. Testing the
elliptical mask algorithm yielded the following result.

The ratio between facial feature size and head size

is not a constant. Figure 3-7 illustrates this with

three subjects having the same size heads. This

figqure also shows that features may not be found in

a constant location on the head.
Because of this result, the ellipse size and center location
had to be adjusted so that it would not extend beyond the
edge of any subject’s head. The proportions and placement of
features for a typical head were obtained from a drawing
course instruction book (Edwards, 1979:143-145). Figure 3-8
shows the amount of each head made available by the final
version of the ellipse algorithm. It can be seen that
different amounts of data are available to the recognition
algorithm for each subject. This is good because the internal
features (faces) of all the subjects are identical (the face
of subject 43 is a scaled up version of the others and the
face recognizer is designed to be scale invariant). The face
recognition algorithm cannot "see" the hair of subject #1 in
this image, but this will be consistant for all photos of
subject #1 and so this is not a problem. Being able to "see"
data outside of the internal feature area, (more data for
some faces than others) has allowed the AFRM to distinguish
between three subjects that could not be separated using only

internal feature information.

3-12

O "'V‘."T"l"EKT

S Rat Sa5 Ra'eha AA'D NS ga Bt SaccAnaie At tal vai % Vel Sad ool Vel el Mal Vo Uk woh ol Qi hed $a0" AARELEOL bt ol La A hA AR SITR e s the®

4
S
N
4 S
4‘.\'
A
N
K /]
" @
[y d
3 =
+J
L.}
']
b [
—t
A «
- s
» Q
b &
' [~
) -
I
b —
[+
. &)
. .d
3)
X c
- Q
_ Lol
3 -
i L
qs 5
i ."' sed
._ =z
1 m
o Q
(8]
[y [\
R <9}
(3
v
~ V]
5 L
4 3]
)
A .
L .~
1l !
~
Q
| -
| =]
on
voud
(a
,:
L4
al
. o™
2o
"
. 3-13
o,
4]

s

Sradnda
i

RSO Ja
e '

e

ORI AP AT I A A PN A e e T A T

3-8. Data Available to Recognizer

Figure

A i Sl T N R N
.f.'JNI_‘f_ ,“.'F ".f‘-" It J‘._l‘_ "\("-{"_-' '\I‘v’ Y

PRI

a2

Ty e e & »

« s

RERA, S ARPPIP P

TNV MUY W W e WYN Y RN RO FPRR ha®, %" Batalia” e 0g° L0100 A ghite obg ohh g pih il g il G A R '-'-""-v"Tw‘—"

The software used to calculate the size and location of

o

the ellipse is included as part of the subroutine FACEMAP in

. s,
L

the code for the AFRM, called FACE.C in Appendix B.

Brightness Normalization

When Smith'’s face location algorithm was re-coded on the

Micro-VAX, a modification was made to make it invariant to

Lay &

the overall brightness of the input scenes. This allowed the

O

[W

s location algorithm to locate a face in both dark and bright
settings as shown in figure 3-9. This was done by comparing

, the eye signature minima and maxima to the value of the first

e maximum found (all others had to be within a specific range
of the first). The value of the first maximum is the local
brightness of the signature, and the eyes are "dark" compared

; to this value.

40 Further testing showed that the face location algorithm

was prone to false alarms when presented with a certain class

Chi Tl Tl

of input objects (which is discussed in the next section).

The solution to this false alarm problem was to change the

et o

face locator from a one-dimensional (1-D) signature analysis

algorithm, into a 2-D object analysis algorithm. This
required that an eye be dark compared to brightness values
all the way around the eye, no longer at just one point. The
new face location algorithm had to find dark objects in a 2-D

scene rather than dark points on a 1-D signature. A "dark"

MR

object is defined as an object that has a lower brightness

value than the values of all objects surrounding ‘t. For

example; a brightness value of 20 is not considered dark if

Cy
-

‘.'J“-f-' o
'

3-15

e Ay

/-}J.'

o <, Sy
¥3)

RSO .‘.J:I\--'; T S A N N T P
A NS SO E'..Bxlf . SRR SRR LI R R A A R RS A A AT

sfaaa7 ssaujybyig jua1233Td 3e sainjeubis -g-f dinbig

il

rorow

N T ,.
RIS « IRRIERNINAY - (AAAA AN A A U LS N

LI 0 I I) R A Ny
P g N & ‘-\a...;.-J J\-.-.-\..-\ t Al

[y

’
€ LA)

o % % %

At VAt Al A 0t auls e iy Ata ea gttty diatitapate tospin gl gty ptu gt gl to gloghy il st gt ahe atrateral g ol tate el At tal ol Db ta b ial tabonale ol aba ettt At otely |

all the values around it are 10, but a value of 100 is dark

1 _ goe
yaau f X0

. if it is surrounded by values of 200.

The brightness normalization algorithm calculates the

average brightness in a square-shaped neighborhood around a

e el

pixel and resets the pixel value as follows:

pixel value = 128 + (pixel value - neighborhood average)

In this way the "darkness"” of the pixel is measured relative

,\ to a fixed average value (128). This is done for every pixel

b in the scene (each having its own neighborhood). Figure 3-10

:

. shows an input scene with 4 different regions of brightness.
Normalizing this whole scene results in Figure 3-11. This
figure shows that the recognizability of a face is not

Q,’ dependent on the overall brightness of the face, and it will

be scenes like Figure 3-11 that are input into the face

." ‘U. 5 .l’ \'

S N

recognition algorithm. The face location algorithm is only
looking for dark objects, so a second step in brightness

normalization is to decide whether a pixel is dark or light

R Tt R AR

relative to its surroundings. From Figure 3-11 it is easy to
see that anything below the fixed average of 128 is dark and
> anything above is light. By setting a threshold value just

: below 128 and comparing all pixels to this value, a binary
(light/dark) scene like Figure 3-12 is easy to generate.

This scene shows that all facial features were dark relative

Pl .-' Pk A Al

to their surroundings (this is why the signature technique

worked).

3-17

0'
&
2
¥
o

uoyjezyjewioN ssaujybrag o3 3ndur gy-f sinbiy

uorjezyrewioN ssaujybrig woid Indino "11-f 2iInb14

LI
-— X g
.38..\.#,‘». ‘ .r“l‘

..). ..J‘.--l 2 -.\\A-‘., | . . L .l'- u-‘.-'o- ..,.. ;! -v.-‘

3-19

‘el Sl el i A B e R M ATRa ULt ath il et pAR e s gt ah b g O T TV W S N T N IO W

................

Figure 3-12. Binary (Light/Dark) Scene

3-20

PAESEN M S S B |

v
AT T T N T e T o ey e v e T TSP TR PSP S
4' o "ﬂ-""'\\'\"'\"#’u‘r"."-.'r’-"‘.‘r-h"-.' oy \f\'_ﬂ."‘-,"n'\.-.‘ e S T T R SN oS

The first half of the brightness normalization algorithm

is a reasonable pre-processing step for a CTT-based and
"human~like" face recognizer. The algorithm fits a human
model if it is thought of as one of the pre-processing steps
performed by the retina (Werblin, 1973:71-79) before sending
the image to the brain. Asking a subject to point to dark
objects in Figure 3-11 verifies the human ability to make the
light/dark decision (the second half of the algorithm) but no
assumptions are made about where this decision occurs in the
human.

The code for this algorithm, without the binary decision
part, is listed in Appendix B as BRIGHT.C. Appendix E gives
a complete analysis of this algorithm. The whole algorithm
is included as a subroutine in FACE.C called BRIGHT_NORM.

Contrast Enhancement

In Smith’s AFRM, contrast enhancement was used to help
the face location algorithm. It was also used by both Smith
and Russel to more accurately locate the edges of features
prior to windowing. After calculating the window locations,
both authors could have taken the data for each window from
the original (non-enhanced) scene. However, the contrast
enhanced faces presented much more consistant data to the
recognition algorithm because slight shadows and reflections
were removed from the face. The new AFRM presented here no
longer needs to enhance contrast in order to locate and
window faces, however it is still used prior to recognition.

The recognition algorithm takes faces that have been

3-21

brightness normalized and contrast enhances them using an

ITEX library function called HISTEQ. This function generates

a histogram of a specified sample rea on an image and then
uses this histogram to modify the brightness values of the
entire image (ITEX-100, 1986:9-27). 1In this case the sample
area is the internal feature area starting just below the
eyes and ending at the center of the mouth. The result of
contrast enhancement is shown in Figure 3-14. This result is
close to the enhanced faces in Figures 2-7 and 2-9.

Smoothing

Before Smith’s face location algorithm could evaluate a
signature to see if it represented a face, Smith found it
necessary to convolve the signature with a gaussian function
to smooth it. This was to eliminate noise that added extra
minima and maxima to the signatures as shown in Figure 2-6.
Figure 3-9 shows a signature after smoothing. On the Micro-
VAX, the ITEX library function "BLUR" was used for smoothing
the image in this work. This function convolves the image
with the following kernel.

1

1

Figqure 3-13. Pill-Box Kernel for BLUR
(ITEX-100, 1986:9-25)

LR N T T e gn o Y] RPURRAR

. W -
Y G
e’ o X

LYy,

e e
st Sy

Contrast Enhanced Face

Figure 3-14.

~

(aa]
o
i
(ag]
N
N AN

-
. . 4

Nt

Face Location

Part of the scope of this thesis is to evaluate the
automatic face location algorithm and attempt to speed up
face location while improving recognition accuracy. This
section is written in two parts. The first part describes
test results from the original face location algorithm and
the second part describes a new, two-dimensional, version of
the location algorithm.

Evaluation of the Original Algorithm

Smith's face location algorithm was re-written in the C
programming language and tested on the Micro-VAX with the
following results:

The location algorithm can find all the faces (up to 4)
in an input scene in approximately 4 minutes. This includes
time to pre-process (smooth) the scene, time to store each
face to disk, and time to wipe out each face in the scene
(wipe out after saving to disk so it won'’t be found again).

The face location algorithm is scale invariant. Overall
size is not one of the measurements used in evaluating the
facial signatures, although a maximum allowable size has to
be defined so the facial windows will fit into a reasonable
array size for further processing.

The location algorithm is brightness invariant. All the
values of minima and maxima are measured in relation to the
first maximum found on a signature.

The algorithm is sensitive to variations signatures due

to eyeglasses (dark-rimmed) and mustaches. Eyeglasses add

3-24

-;J:'.‘/-'l'

KRR M

AL

IR . W25 WV RS R R A |

s

-
A

L SN

DA AS

e

minima to the eye signature and mustaches eliminate the

bright region that allows separation of the nose and mouth.

The algorithm is sensitive to head rotation and lighting
direction. This is not a problem as long as the subject is
looking squarely at the camera and the lighting is directly
overhead (two assumptions used in this thesis). However, in
testing scale invariance and testing against various back-
grounds, subjects had to be positioned in various locations
in the lab. This made it impossible to control lighting
direction and head positioning. To find out why the AFRM was
failing to find many faces that looked like acceptable inputs
(in the author’s opinion, the face was looking straight at
the camera and lighting was overhead) a signature graphing
program was developed. This program, called GRAPH.C in
Appendix B, allowed the user to plot the brightness variation
along any line in the input scene so that measurements could
be taken on the eye signatures. The problem with slight
changes in lighting and rotation is that the symmetry of the
eye signature is destroyed. A.lowing greater variations in
the measurements made the face locator capable of finding
more faces but also increased the number of false alarms.
There is no clear dividing line between faces and non-faces
using this face location algorithm.

The algorithm was prone to an unacceptable class of false
alarms. The signature technique ensures that certain bright-
ness variations are present in a scene before declaring that

a face is present. These variations include finding two dark

3-25

P N i ot e T S N ST Tt R T I
%

ot - . o
- EYRAEY . at AT T Y. D . ST ~ . -, Cn™ o™ "
e S . e e e -

objects side by side on a light background (eyes) and two

e more dark objects below and between the first two (nose and

mouth). The problem is that the signatures look on a single

line through the objects and can’t tell what brightness is

present above or below this line. Figure 3-15 shows an

example of an object that can pass all the measurements of

the face locator but does not at all resemble a face. The

signatures that were found by the location algorithm have

been highlighted in the top of this figure and the "face"

has been circled in the bottom of the figure. In this case

the scene is random lines drawn on a piece of paper. Other

false alarms have included books in a bookcase and a computer

screen with several reflections on it.

New Algorithm

‘.‘ Figure 3-15 is an unacceptable input to send to the face

recognition algorithm. 1If there are going to be false alarms

now and then, they should at least resemble faces. 1In an

effort to correct this problem, a new face location algorithm

has been written that looks at faces in two dimensions (2-D}.

Instead of looking for dark points on a 1-D line, the new

face locator looks for dark objects in a 2-D scene. This new

3 algorithm does have occasional false alarms but the objects
: it finds always look like faces (when shown to a human sub-
ject, the subject can see the "face"). The new algorithm
also retains the scale and brightness invarience of the sig-
nature based algorithm, is less sensitive to variations in

lighting direction and head rotations, and is faster. The

3-26

A A s _n_e 8

e
. - PRI ST . - W T e e e At e e e N v e
. . Y . - » R S v

S T TS Yo IS W
e M W

.

) RN E N

YN IN

.
S

2 v L
Kot SRS

) ".'-'.’-:n't

k]
.

\

A e T e AT Tt Lt

o

"

LS
L) »

Figure 3-15. An Unacceptable False Alarm

et G ua ate . ia’ afda ol oUa" - oy et gav - oaa: ot e PO Ty g -
¥ s W - ¥y - - - ¥ LA - - « Wy N T T ¥ v Ta¥Wy - " u < LI B ¥

original face locator was removed from the AFRM and put in a
ii; program called FACE_SIG.C and is listed in Appendix B.
The new face location algorithm uses binary scenes like
the one shown in Figure 3-12. 1If it finds two dark objects
with nearly the same size, one next to the other, then a
possible pair of eyes is detected. A "dark" object in this
case is an object with a light area all the way around it.
This eliminates false alarms in scenes like Figure 3-15. The
only task the face location algorithm has is checking for two
b dark objects (nose, mouth) below and between two others that
are side by side (eyes).
In order to help the locator check for a set of features

that make up a face, a feature finder was written that looks

A

at all the dark objects in the scene and generates lists of
‘l‘ possible eyes, noses and mouths. These lists are passed to

the locator which tries to assemble as many faces as possible

from them.

The feature finder ensures that the dark objects meet

three requirements. The first is that the object is a solid
b area of dark pixels. The second is that the size of the
object is under the maximum size allowed. And the third re-
quirement is that the object can have a block drawn around it
that will not touch another dark object (ensures a light area
all the way around the object). Figure 3-16 shows a scene
after the feature finder was run. All the blocked in objects

are possible facial features.

When objects are located and sorted into lists by type,

3-28

LR P L L T AL S S N
'\-"‘u"v".f\f'- \-,\. e (‘-(‘.'ﬂ.’

e wamma e .-
R A S S S LA A SN

»

Result of Facial Feature Location
3-29

Figure 3-16.

rwf.‘lsd\.qn.l‘,l . ; -y e .\i.\\w\\:nn , X .l.-.. M..- \.‘ ‘ .IIJ.J u— .c.. \..-.f.p.-. .I.f.. V-.y.- S e ¥ e B et «- -(.ﬁfﬂ’ln

¢

[A

.l
'.c'-

A ',-.').‘).'I.'.'

'y PR
- L'l."l.{!. '.". ‘

Y ¥ 4 A
IAAAAAAN

ol o

s 0 @
.
O

AT NS,

0
—

-,
I‘.
Y
~ - -t - T et e™ T T e S S S R
\.-',-"'-‘,-_4-_‘-"';‘,-_-'_-"_-"_."-' At a N S Sl e e e e T T T e e e AT
Ty Wy .

s,

their sizes and locations are stored in the feature lists.
Then when the face locator determines that a set of features
make up a face, all of the feature locations used for win-
dowing the face are already known.

When the new face location algorithm was tested on the
Micro-VAX, the following results were observed:

The location algorithm finds all faces in an input scene
in less than 2 minutes. This includes time to pre-process
(obtain Figure 3-12), time to locate features, and time to
store each face to disk.

The location algorithm is scale invariant. As long as
feature sizes match each other within a face, it doesn’t
matter what the overall sizes are as long as they are under
a maximum defined limitation.

The location algorithm is brightness invariant. The
brightness normalization algorithm takes care of variations
in the input scenes.

The algorithm is sensitive to eyeglasses and mustaches if
they get in the way of separating facial features.

The algorithm allows slight head rotation and variations
in lighting direction (as long as lighting is still from
somewhere above the subject). There are no measurements
for symmetry between the eyes.

The algorithm will find faces where no human faces exist
but the false faces will have much more "faceness" in them.
Figure 3-17 shows an example of a false alarm. The top of

the figure shows the original scene and the bottom shows a

3-30

. E
1]
» pas L]
—
<
Q
A n
N —
Bk - i
g [<H
= @
P
- L
(]
o
Q,
(8
(&)
LA o
<
[=)
<
~
—
|
™
-
PR Q
N
=
o
-
b,
2

|
j

'.-.".*.’ -4-.- D T S TR - T T A RV W T LR S . [R
L e “p N - '.""..‘.-' e ‘__.'__..'..".. e T _--"'.-'...'4. T T Tt) - B S
PR PRI ERIY \-LA-LAuA-J-. 2 P PRI R S S R A S A, VLV R

"face"

block drawn around the internal feature area of the

that the location algorithm found. When the algorithm was

given the scene in Figure 3-15, it did not find a face.

The new location algorithm is a more reasonable model of

a human. It is hard for a human to find a face in a scene

given one line of data at a time, but easy if given small

regions of the scene. Research into eye scanning patterns

(Luria, 1966:467-484) show that it is likely that people are

evaluating small areas in a scene. 1If the brain can deter-

mine whether a dark object is present in a small area of a

scene, and remember where that area is in relation to all

other areas, then it can easily recognize more complicated

objects in the scene given some simple rules. For example,

a face decision rule would be:

If there is a dark object {
I1f there is a second one beside it {
If there is a third below and between them ({
If there is a fourth directly below the third ({
Then there is a face

} .
} ,

}

}

The face locator is two subroutines in the program FACE.C

in Appendix B. The first is called FACEMAP and it has the .

decision rules as shown above. It calls the second routine,

called FEATUREMAP, which lists all the facial features it can

find in the input s« ‘ne. FACEMAP uses the information in the

feature lists to locate and list all the faces in the scene.

Along with each facial location, FACEMAP stores feature edge

locations that will be needed to window the face.

3-32

- eiee.- et e e e
T \/-_ N St v

........

“atatale?ni, ‘2t tRbat, o8- g ceg an e pia s acion il atie st n athrath ofatoth ki akhtalin® i At Latel g - Calt Bl A R -+
i * 2, ¢

Windows
Y When a face is located, it is stored to disk and infor- é

mation about its feature locations are stored in an array. .

Figure 3-18 shows all the measurements that are stored for

the face. All the measurements are taken using the top

corner location of the face as a reference so when the face

is displayed on another area of the monitor, the measure- 4

ments remain valid.

The measurements in Figure 3-18 allow the face to be 5
partitioned into the six windows shown in Figure 3-19. The
windows are defined as follows: B

Left Half of Head

Right Half of Head

Top Half to Nose

Internal Feature Area

Left Half, Internal Features
Bottom Half, Nose to Chin

DU D W N

These windows were selected based on combining the best g
results of Smith’s and Russel’s windows as follows:

1. Windows 1 and 2 solve the symmetry problem
discussed in Chapter 2. Using the elliptical X
mask technique should cause these windcws to .
look more like Russel’s windows than Smith’'s.

2. Window 3 yeilded high scores as shown in
Figure 2-8. Smith could not use this window
because he had only internal feature infor- !
mation available. Russel'’s window 6 (a similar
window) yeilded good results (Russel, 1985:6-11).

3. Windows 4 and 6. Smith And Russel used only
one side of the face for these windows so
they would not be symmetrical. They lost
information however by placing the windows
into the corner of an array prior to cal-
culating a gestalt. What they lost was the
positional relationship between features on .
the face. This will be discussed more in the .
following section.

RRTTAN YR u Al 2 A RA AN et Al a-os L atiati gt ati gt pli g anie gt g W g bt g g T P T I T W VU W S W W O T

U

l.ll,l..—

k- center

(x.y)

I

el A

) ".".ﬁ:‘:’) gl

P
»

Y% N

v N Y

AL PAPNS |

R

.

[g
a

7

Y

Figure 3-18. Measurements of Facial Features

[N \l':
“'l v

3-34

Y. %

~u N

e e h et e e e e A b e e . e v e a v awa
s A A A A R S R, AR CC A PO L T e
" g ;) B PO A e g L A A e af) A r AR

BN Y Y T SNy % WS R

S WM R

Figure 3-19. New Window Set

r
o,

-

... -...'\ -- .\J.t + NN .-. o

WA N]
~.r. w.......\. {

3-35

S T v,
& 4 %
A

L' I

s
~
L

y

Y

o

S T AN A

-
~¢

&L

b T W T
A

s

XY S

Y

:. I.. l"

LN

«

<

YY)

- -

20,

e

v »
% a
A

7.

»

»

)

R SENEN

O
- Sl lN

-

W Ty

25

~

-

v
-

NN

4. Window 5 was used by both Smith and Russel
with good results. Russel’s windows 1, 2,
and 4 were his highest performance windows
(Russel, 1985:6-11). The present windows
l, 2, and 5 match Russel’s windows.

Gestalt Calculation

The gestalt calculation has not been changed from the
original algorithm on the Data General system however, three
enhancements were made. The first was to speed up the
calculation, the second was to increase the resolution of
the results, and the third was to increase the separation
of faces in the recognition database.

To speed up the gestalt calculation, the size of each
window was provided to the subroutine responsible for per-
forming the calculation, CORTRAN16. This subroutine feeds
one line (row or column) of the window at a time into the
1-D transform subroutine, RTRANSB. Instead of feeding all
lines of the window into the 1-D transform, CORTRAN16 now
stops with the last line that contains scene information.
So if the window size is smaller than the size of the
gestalt array, fewer calculations need to be performed.
Figures 2-7, 2-9 and 3-20 all show cases where the window
information does not fill the gestalt arrays. The gestalt
calculation for all six windows of a face now takes less
than 3 minutes to complete, compared to Russel’s 8 minutes
(Russel, 1985:5-51).

To increase the resolution of the gestalt calculation,

the gestalt array (where the window information is put) was

3-36

Keiiy 3Te3sao utl juawaddeld MOpPuIM °0Z-¢ 3inbid

3-37

Gy - .,‘. -.-

RRBL| (AN

N
D
n
Y
LY
‘
w2
"

). 555,“_‘!,‘(.&; ‘"‘q..'”ﬂ Pl

& a X 0
LS A A &

NN

—-

o4 ..‘ .l’ 'l.

. h,

increased from 64X64 pixels to 128X128 pixels. This also
allows the recognizer to handle faces larger than 64X64, the
previous size limit (Smith, 1986:5-8).

To increase the separation of faces in the recngnition
data base (increasing the accuracy) an idea suggested by
Russel was tried in the AFRM (Russel 1987). This idea was
to maintain the positional relationships between features on
the face by placing the windows into the gestalt array in
the position that they appear on the face. Figure 3-20
shows how the windows are now placed in the array (no longer
in the upper left corner). Now instead of a gestalt value
being referenced to the corner of the window, the gestalt
value for each window is referenced to the corner of the
whole face from which it came. To see if there was any
difference in the separation of faces, the gestalt values
were calculated for a set of six faces (3 of subject LL and
3 of subject JS) with both windov placement techniques.
Table 3-1 shows the average gestalt values obtained for each
subject. Comparing the separation of the average gestalt
values for these subjects resulted in Table 3-2.

The separation of gestalt values was better for all the
windows, when the windows were placed in the gestalt array
based on facial placement, so this technique was used. One
additional change was required to make this technique work.
In order to scale the gestalt values to a standard size face
the scale factor had to be calcuvlated using facial size in-

stead of window size as shown in Figure 2-12.

3-38

Table 3-1. Gestalt Values for 2 Window Placement Techniques

Windows Placed in Windows Placed by
Corner of Array Facial Location
LL(X,Y) JS(X,Y) LL(X,Y) JS(X,Y)
1 21,50 26,58 23,51 27,60
W 2 12,56 17,67 47,59 59,69
- 3 38,36 44,45 36,39 43,50
4 39,54 45,54 37,59 44,59
A 5 25,51 29,52 23,56 27,58
)] 6 39,95 49,94 37,100 48,100
”
2
y ‘.‘
Lol
a
Table 3-2. Separation of Gestalt Values
)
Best Separation with Placement
Window # Referenced to corner of:
1 Either
2 Face
3 Either
4 Face
5 Face
- 6 Face
2

s aaw

Cu a0 454

)

)"1.

¢
LAY
Y

T R

Recognition

The algorithms described up to this point have been
designed to re-create the ideal image acquisition conditions
that Russel had in 1985, but with no human intervention al-
lowed. Russel had fixed lighting and background conditions,
a fixed setting on the camera, and operator input was allowed
(which provided the AFRM with the exact edges of the head).

The AFRM had high recognition scores when it was given
faces that met all of Russel’s conditions. Russel’s results
are shown in Table 2-1. When conditions were allowed to

vary, the recognition accuray dropped, as shown in Table 3-3.

Table 3-3. Smith’'s Test Results (Smith, 1986:5-14)

Number in Database : 20

Number Recognized as 1lst Choice : 1
Number Recognized as 2nd Choice :
Number Recognized as 3rd Choice :
Number Recognized as 5th Choice
Number Recognized as 8th Choice
Absolute Correctness = 0.60
Average Reduction in Uncertainty = 0.9525

Lol el NS NN S]

The new preprocessing, location, and windowing algorithms
should cause an increase in accuracy when used with the
original recognition algorithm, so Russel’s algorithm "REMID"
was implemented as the subroutine, "RECOGNIZE" in FACE.C, and
tested. The distance measurement used in RECOGNIZE for each
window (w) is shown below (Russel, 1985:4-40a) and is mul-
tiplied by a performance factor for the window (w).

-1 (gix—gux)2 (giy—guy)2

viid)(w] = exp{ — ~=——-----3 + —==~=---o3 1}
1.4 (2*sigix) (2*sigiy)

3-40

IR RN " Ty - - - . eNA® ald", . > _gav g
\ J < S N T N A N W W T TV W R N N T o R R VW oy

. where v{id][w] = the distance from candidate (id) to the
D unknown individual for window (w).
]
‘ N
v gix,giy = X,Y coordinate values of previously

; stored candidate (id).

- gux,guy = X,Y coordinate values for an unidentified
:: individual.

\

k. sigix,sigiy X,Y standard deviations for person (id).

b

f; The recognition algorithm was tested with and without window

3

5 performance factors and the results are given in Chapter 5.
Figure 3-21 shows a typical output from the recognizer where

)

N the top image is the person to be recognized, and the bottom

L o

- images are pictures of the three closest individuals in the

+

‘ database.

-

-,

<

- Summary

o

- @ A This chapter presented the changes made to the AFRM as

-“ "

? part of this thesis effort. Discussion of changes was kept

:j at the algorithmic level and was kept as independent of
implementation as possible. Chapter 4 will describe how all

) 'r:

E the algorithms were gathered together into a complete AFRM

-

3 program and implemented on the Micro-VAX II computer.

-

1

.

&)

-

L4

L4

“)

"¢

¢

*

s

>,

7 3-41

+

L4

I e
SRS A TSR S

I,

o p o A m e e e e .
Ny "\. ! -.V’ -.~."-." SRRSO COr TR LY
L} » S, “ . £y

4ZINO0D3H¥ woijg 3Indang °"1z-¢ 9inbiga

hananwy yrequu ||

3-42

-~

=

v

s

o

ylequoy|

A

e
.
AR

. e 2t eRs v |
-.-.-f-nih ™ v . v oS A

&

..- MM YN L - A IR --\\--. R 'y ..-..-w\.q-(- D L e r -‘.-\.\-\.\

e a2 8 a s #

A AP

anaans

'

REGR Y

[‘l

t ok
_. rGrieCrace

PLAA LA

Pl)
...llll'\

IV. Implementation

The first section of Chapter 3 discussed the need for a
new environment for the AFRM. The Data General system could
not adequately provide the speed and memory needed by the
AFRM so a Micro-VAX II was chosen as the new host computer.
This chapter discusses the details of implementing the AFRM
on the Micro-VAX II designated SMV2A. Operational details

are provided by the User'’s Manual given in Appendix C.

Software

Software for the AFRM was written in VAX C version 2.0.
The software has to be linked to several libraries including
the Imaging Technology (ITEX) library of image processing
subroutines. Appendix C describes the linking requirements
in detail. Appendix B contains the source code for the AFRM
and a list of the required ITEX subroutines.

The Micro-VAX uses the MicroVMS V4.2 operating system,
however the AFRM code can be easily modified for use on other
systems. There are only two direct references to the oper-
ating system by the AFRM code. The first is a call for the
operating system to delete files using the "system()" command
{Kernighan and Ritchie, 1978:157). The second is a reference

to directories and subdirectories where files are stored, and

the directory structure is dependent on the operating system.

RN o 8 A RY:

%

The AFRM is located in a directory on the SMV2A Micro-vVAX

a
¢
.

called FACE. It can be accessed by logging on with username

=
'
‘lJ .

"FACE" (no password is required). The User's Manual des-

[]

cribes how the AFRM is protected against accidental change

'

and erasure and how the protection can be removed in order to

| I Ry

modify the software. The AFRM database files are located in

a subdirectory called "FACE.DBASE".

Program Structure

The source code for the AFRM, called FACE.C, contains all

the algorithms described in Chapter 3, all the code necessary

S AP R A

for maintaining a facial database, and the menu structure

shown in Figure 4-1. When a user logs on to SMV2A (as FACE),

L}
LR,

4

the main menu is displayed on the computer screen. This menu

é° provides access to the individual AFRM algorithms and access
to the database and demonstration options that will be des-
cribed in this chapter. Descriptions of all the menu options
are given in the User’s Manual in Appendix C.
The AFRM menu structure is set up so that a user can run
. each algorithm independently of all the others. 1In addition,
an option called "Total System" is provided that runs all the
algorithms in series as shown in Figure 4-2. No operator
inputs are required once this option is selected except for
selecting which camera to use and when to quit. Figure 4-2
E shows the time spent in each algorithm and the time required
‘f for each loop. The subroutine in FACE.C that is represented

by this flowchart is called "AFRM()".

K-~ 4-2

T S T TR S W .- e e e
s PaT et e L - LR R) R T K et o [- - , . R
A T T T e e L M T AT T AT TR .1

sl tal,Val Sab vat v i vaty VOV PN vy NTIVEVY L) BAAAS T Iy S T e O O™ T T W W WO T W W

L 4

3

v

i
y Ca
\»': i:‘_.-

*‘

‘»‘I

-,

A

*l

A1)
o\
b A

<.

ﬁ ** Acquisition of Images **
- 0: Return to Main Menu
o 1: Stationary Target
~ ** Main Menu ** 2: Moving Target

o 1: Acquire Images 3: Load Image from Memory
jﬁ 2: Find Faces 4: Save Image in [FACE]
" 3: Gestalt and Identify / Save

[5: Set Camera Port
5 4: Display Contents of Dbase 6: Camera Check

. 5: Delete a Subject 7: Re-Initialize Hardware
. 6: Delete an Image
b 7: Train
£ .
M (° 8: Demonstration —_ ==
v "7 ** Demonstration **

) j 0: Quit 0: Return to Main Menu
o 1: Identify a Person
e 2: Total System
V.
o Figure 4-1. AFRM Menu Structure
-r: '

e

s

I

%

>

E G T U R

se e 22 B A

“oaat wat g% et Bat g b el D20 Sl 288 8 0.0 0. A2 0'A 0 sl Ry, Ala AR A Akardie Vs AVo"ate ats Al AUy aloalie a0, a0 Ak ol Al a8, AL el el -l AL, sl

loop 3
< 4 minutes

loopﬁ;\
30 sec

<1 sézj

Acquire Image |

<1 SecJ loop‘;\

Acqu1re Image < 1 sec
< 1 sec
Is there a moving target?| No

Yes

x

3 sec
Acquire a Final Image
(lets target get ready)

[7 T30 sec /
Is there a Face(s)? No

Yes

3 minutes
Gestalt Face(s)

f

< 5 sec |
[gecognize Face(s)J

Quic?) _J

|
(Return to Menu

Figure 4-2. Total System Option

PO U UM U W U U7 L LT Ty Yol Vg Vol Cad tal dal Vo bag val Val i § tal Wal v o, R R TR et tatoaite ab o ab ol tabotal, tate abo el tats ‘Al ate’

Database Design

A database was written in order to maintain the gestalt

>
“:\
o

files of all subjects entered into the AFRM. This includes

the files for subjects that the AFRM is trained with, and

PAP M

extra files used for testing the recognition capabilities of

the AFRM. When the AFRM is not running, all the gestalt data
are kept in two files called TRAIN.DAT;l1 and OTHERS.DAT;1l.

These files are ASCII text files, so they can be displayed on

WO MR

the computer screen and printed to a printer. Examples of
these files are shown in Appendix D. The database software
% is contained in subroutine "MENUl" and is supported by the
following subroutines which are all contained in FACE.C:
.. COPYFILE GETINT
; DEL READFILE
DISPLAY WRITEFILE
‘. When the AFRM is first activated (by logging on), the two

disk files are read into arrays in memory. The contents of

these arrays are modified using Main Menu options 3 through 7
while the AFRM is running and when option 0 (Quit) is selec-
ﬂ ted, any modifications are written to disk. It is important

that the AFRM is terminated only by using the Quit option,

because all other methods of terminating the program (CTRL-C,
- CTRL-Y, etc) will prevent the modified array data from being
stored to disk. The method used to prevent this potential
problem is discussed in the User's Manual.

The arrays used to hold gestalt data are implemented

s e a"w e R

using C Structures so that subject names, file versions and

gestalt values can all be held in the same array. The two

g 4-5

f el e
A R I TR T T AP L SA ST IR T
PP SR R AT,

%

S i d

R L W NS

(Rt e A a8l Bob a8 b ab O 0 B8 Rt R Bt had R0 8 ot g St bt o kg At gt S WY W A alf gt ard oil gth bl at .-"T

structures are called TLIST and ILIST and the contents of
these structures are global, available to all the subroutines
that need to access them. Main Menu options allow the user
to add to (by training), subtract from (delete trained sub-
jects or individual images), and display the contents of the
structures.

The gestalt data files are stoured on disk in a directory
called [FACE.DBASE)]) along with all the picture files. The

picture files are stored by subject name and an extension

that identifies the status of the subject: IMG files are
pictures that the AFRM has not been trained with, and PIC
files are pictures the AFRM has been trained with. These
extensions are automatically changed by the AFRM when a sub-
ject is moved from one area of the database to the other.
The picture files are also stored with version numbers that
match the version numbers in the data files, so the gestalt

file is always linked to the photo it was obtained from.

Summary

This chapter has described how the AFRM was implemented
on a Micro-VAX 1I. Additional information can be found in
the equipment list in Appendix A and the user’s manual in
Appendix C. A more detailed description of the AFRM code
can be found in the comments within the source code given

in Appendix B.

4-6

T I s AT U S R I YL I TN AL S
S T A e S S e e S o N A T S L T
. o ST Sl N . A o™ ™ -

O A A by o AN

T
» e

vaul iy

-
wPe"s a"s u' R 4

.-

N -

Lo

C3 P PR IPATSNL PR SR T L I N SR A P R]

---\.}-.-.‘...-.,{,-J.fﬂ:,f'.

V. Test Results

This chapter presents the results of testing the AFRM
face location and recognition capabilities, and discusses

what these results mean.

Effect of Camera Settings on Performance

The brightness normalization algorithm presented in
Chapter 3 converts all scenes that are input into the AFRM,
into normalized scenes that all have the same brightness
level, or DC term. Since all brightness variations are now
always around the same center value (128), it is easy to
decide which areas are "dark" and which are "light" in a
scene. The brightness normalization algorithm allows the
AFRM to process scenes with a wide range of lighting
conditions and allows the operator to use a wide range of
camera f-stop settings.

The gestalt calculation used in the AFRM is basically a
center of mass calculation where dark regions on the face
have more "mass" than light regions. The ability to locate
a face is dependent on finding the high "mass" areas of the
face in a consistent manner. These areas do not change much
when the camera is out of focus. They do start blending in
with the rest of the face but they can be located in very
blurred scenes. Since the location of facial features does

not change with camera focus, faces can still be recognized.

5-1

O e e o e M e ..' AN AR

3 The gestalt calculation is also able to handle faces of
\, &&5 different size. By scaling all faces to the same size, or
i in this case, scaling their gestalts based on a standard

'ﬁ sized face, the recognition results become independent of
2 scale. The location algorithm is independent of scale by
. allowing it to look for variable sized features and re-

l; quiring it to assemble faces out of features that match

; each other in size. The Dage camera has a zoom lens which
. affects the size of the faces entered into the AFRM.

"J To verify the ability of the AFRM to deal with the

\g variables discussed above (f-stop, focus, and zoom), a test
was performed in which each variable was set three times

; and everything else was held constant. The results of the
_§ test are shown in Table 5-1.

- l? One constant was difficult to acheive and it is assumed
5 that most of the variation in gestalt data is due to this
ﬁ problem. This "constant" was the subject in the input
scene. Since the face used for this test had to be held

%' constant, a subject was asked to sit as still as possible

E for several minutes while a series of pictures was taken on
’ video tape.

% Table 5-1 shows the three variables in the first column
? and the image version number assigned by the AFRM in the

: second column. .n all, there were ten images entered into
lﬁ the AFRM. The AFRM was not trained with the subject prior
IE to the test. The last two columns show the distance to the
{ closest candidate in the database and the candidate’s name.
S
& >-2

:

(4

23 . |
hl\fdfdf;l’.Lfif'f:lgf'fJi;T{${r<f§f'{;fgf;{; {J{;Jch'n:J' RGN 'ff:*\f§¢¢f:’hf.“:"fcf{f-'i¢{fi’:f‘f';f'f:‘

v

The AFRM was trained with the first four images entered

AN during the test and thereafter the AFRM recognized the

YN (eAEs

subject as "fmooney", the correct result. The candidates

[
: "mkabrisky" and "bgeorge" continued coming up, but as the
J second choice after the AFRM was trained.

The AFRM started assigning version numbers from 1 after
k> the AFRM was trained with the first four because once an
o

“
> image is used for training, it receives a different file
A
name (It is a .PIC file, no longer .IMG). At the beginning
b
N of the test the AFRM was trained with fourteen subjects.
..
o At the end of the test, image files for all the subjects
" A
' were tested to ensure that the AFRM still recognized them
. correctly (that nobody else was recognized as fmooney).
;:‘
n d° . . : :
- T Variable # Winl Win 2 Win 3 Win 4 Win 5 Win 6 #1Dist Candidate
g 5.6 1 25,54 45,54 36,38 36,61 22,58 38,101 .358 mmayo
~ F- 8 2 22,62 44,71 33,51 33,62 22,60 35,97 .603 mkabrisky
Stop 11 3 22,58 47,63 38,45 36,65 22,63 40,97 .544 bgeorge
16* 4 23,64 46,64 37,50 37,64 23,62 39,98 .503 bgeorge
1 22,64 44,68 33,53 33,62 22,60 38,97 .659 fmooney
N Focus 2 22,65 43,70 34,53 34,63 22,60 36,94 .639 fmooney
- 3 24,57 44,60 37,44 37,63 24,60 39,97 .736 fmooney
" 4 24,62 46,66 35,51 35,62 24,60 38,97 .758 Emooney
r.. Zoom 5 23,64 47,73 35,55 35,64 23,61 38,96 .695 fmooney
- 6 23,58 50,63 36,47 38,63 23,61 40,97 .718 fmooney
. * At this point, train with lst 4 images and set
- F-Stop = 8. All images from here on should be
- recognized as fmooney.
-
- Table 5-1. Effects of F-Stop, Focus and Zoom on
b Location - 4 Recognition Performance
3
X\
- .
AR 5-3
f.
,\
’.

-
Cd

N T AN A I A I N A A T it A LY e e N A e e T e e e A e Tt R T N Lot
5 LAl e Tl T T RS -.'\-. N e 5.'-.‘«. T T T S NN S S AT A A‘_ -~ LS

VU U UNURUY LN UN N UM UN LU UV US TURLUYUWY g gt ™ 4) W TTeTy 4 FW N VNN W ‘Bl Bab R’ Aav

ool

False Alarms and Missed Faces

LA L

The new face location algorithm was compared to the

s S
'
va

original, signature-based, algorithm in Chapter 3 and was

found to be less prone to false alarms (finding faces where

BelaTa a8

none exist). This result is good as long as the location

algorithm doesn’t start missing real faces in order to keep

J B 4

the false alarm rate down. To see if this was occuring, the

0y
[I g

two location algorithms were tested on a set of twenty scenes

Ly g

shown in Appendix F. Ten scenes had faces present and ten
did not. The scenes covered a large range of backgrounds,

lighting conditions and scale. Table 5-2 shows the results

A i R W)

»

of the test for each scene. Table 5-3 summarizes the results

and clearly shows that the new face location algorithm, AFRHM,

I

performs better than the original algorithm, FACE SIG.

4o Scenes With Faces Without Faces
- FACE SIG AFRM FACE SIG AFRM
F,a 11
12
13
14
15
16
17
18
19
20

S
>

mmmmmZ2ZZ22ZmTY
>

CWELIAOAUNH WP
mmZmZmmZ2Z

PAIPP2Z2Z2PZZ
2222222222

L
[

- [F=Face, A=False Alarm, N=No Face]

Table 5-2. Face Location Test

FACE S1G AFRM

[. False Alarms
(20 scenes) 7 1
- Faces Found

- {10 faces) 6 7

N ~ Table 5-3. Summary of Face Location Test

5-4

e T e m et A A" AT A A" P T R R I L I
NN IR N N N N M N N SN MMM M N N

-
.

o« o

T N AT T T T T s e e T T e N e e T e e e
.__\"\.\ '.__‘. RN . .___‘. N . ~ ~ . RO .

o

* LIRS PA IR

[y Sy P 25

E A0

Fr S

Recognition Score

Several tests were performed to measure the recognition
capability of the AFRM. This capability is measured using
two scores. The first score is the percentage of time the
AFRM is absolutely correct in recognition (the list of can-
didates put out by the AFRM in response to an unknown input
has the proper answer in the top position). The second score
is the percentage reduction in uncertainty. This score,
developed by Russel gives an indication of how good the AFRM
is, when it is not absolutely correct (Russel, 1985:6-8). It
provides an indication of where the correct answer is in a
list of candidates (for example, it might always be in the
top 3 in a list of 20). For all the tests, the AFRM was
trained with four pictures each of ten subjects. A fifth
picture of each subject was used for testing.

The first test was to measure the recognition performance
obtained by using a single window from the face. This was
done for each window and the results are shown in Table 5-4.
This table shows where the AFRM placed the correct answer in
its ordered list of candidates. For example, using window 1
it placed the correct answer for a picture of llambert in the
fifth position.

Table 5-4 shows that some windows performed better than
others in this test. 1In this case, window 4 alone was enough
to correctly identify all ten individuals in the database.
This does not mean that all the other windows can be dis-

carded however, because they do provide useful information.

5-5

e e

......

W S T AP NN T YRS

A3
'\'
p
‘: As the database grows, window 4 alone will not be sufficient.
’
‘
; A Also, a combination of the data from all six windows provides
Py Lad
the same recognition result (100% correct) but with a higher
'ﬁ confidence level.
-
)
. Input Window #
" Photo 1 2 3 4 5 6
\ llambert 5 1 1 1 1 3
’. efretheim 2 2 1 1 2 1
% mkabrisky 2 1 4 1 3 2
ecrawford 4 3 2 1 2 3
mdrylie 1 2 2 1 1 1
2 mmayo 3 3 2 1 1 3
~ mlambert 1 1 1 1 1 1
N jsillart 1 1 1 1 1 2
o dlambert 1 1 1 1 2 1
N gdawson 1 2 1 1 3 1
o % absolute .50 50 .60 1.0 50 .50
o correct
- % reduction .89 .93 .94 1.0 .93 .89
. in uncertainty
- | ® Table 5-4. Recognition Performance for Single Windows
o Confidence Level
o The second test was performed to get an indication of the
P
:; confidence that should be placed on the results. Confidence
~
L4
:j should be based on two factors, the closeness of the unknown
4
photo to a given candidate’s data, and the difference in
’: distance to this candidate and all others. Chapter 3 shows
"
A that distance, as measured by the AFRM, varies from 1.0 (a
- perfect match) to 0.0 (no similarity at all). An example of
,: calculating confidence level follows.
-
-
-
3
.-:' -
e, e
o 5-6
3
>

. . P e A . - S S S S N T i I A i L T I RV A SO N RS SR LD)
(' Pttt ool el e '-.’~."s AN «.’-."x R '\ ST P AT \' SO A A A R R A S A A,

[\

-
-
X3

-

-

-

¢

-

u
s
d

3 Suppose the AFRM is to recognize a photo of
llambert and it puts out the following list

. e of candidates:

YR 1. llambert distance = .93
2, mkabrisky distance = .92

'\ 3. srogers distance = .11

It is clear that the llambert file closely
matches the input photo, but so does the
R mkabrisky file. The srogers file is quite
far from the input photo. The confidence
level assigned to both candidates 1 and 2
.4 should be nearly the same (about 50%). Now
) suppose the AFRM has put out the following
list: 1. llambert distance = .49
2. mkabrisky distance = .01
3. bgeorge distance = ,002
If it is assumed that the AFRM was trained

’; on llambert, then the AFRM is correct. The
second closest candidate is much farther
y away than the first candidate so candidate 1
¥ should be accepted with a high level of
W confidence (maybe 90%). But candidate 1 is
also a significant distance away from the
A unknown photo too. What if the input photo
. does not represent anyone in the database
3 and a distance = .49 comes out for llambert?
X To cover this situation, the magnitude of
L\ the distance must be considered in the
40 confidence calculation.
3 o
- This example has shown that a low distance number should
>
@ reduce the confidence level and a low difference between
candidate distances in the ordered list should reduce the
. confidence level. Table 5-5 shows how the addition of
windows can improve confidence level. The table starts with
the best window and adds windows (ordered by window perfor-
N mance shown in table 5-4) as shown across the top of the
19}
- table. Each entry in the table represents the distance to
- the first and second candidates in the ordered list. 1In all
k<
2 cases, the first candidate was the correct answer (because
L.~
L m,
2 the table starts with window 4, it has 100% absoulte correct
\
N
] recognition results).
.' IO
N : 5-7
N
-
L]
)
o e o A e i e o S e S A S L TR

3 ha

2 2"

Cite l'a e A'ad A RAD |

N
)
: »
I
. gl Input Windows Used
Photo 4 +3 +2 +5 +1 +6
llambert .7881 .7101 .7514 .7396 .6580 .6626
‘J .6583 .5068 .5163 .4837 .4546 .4386
" efretheim .9906 .8769 .8018 .7548 .7505 .7380
" .8476 .7458 .7170 .6959 .6190 .5592
p mkabrisky .9826 .6696 .7456 .6435 .6306 .6469
.7232 .4340 .4509 .3669 .3261 .3558
~ ecrawford .7019 .6870 .6806 .6309 .6230 .6241
T .6620 ,5168 .5946 .4954 .5218 .5200
- mdrylie .8610 .8978 .8305 .8368 .8242 .8257
{ .4374 .4047 .4990 .4135 .4144 .4239
mmayo .9563 .8741 .6773 .6410 .5813 .5787
] .9270 .7529 .6421 .5931 .5524 .4972
o mlambert .9980 .8655 .8888 .9059 .9157 .8997
3 .0009 .0598 .2066 .1678 .1784 .1607
K- jsillart .8532 .9119 .8893 .8794 .8806 .8367
') .5552 .3599 .3888 .3258 .3783 .3577
s dlambert .4540 .6059 .6875 .6705 .6179 .6337
. .1031 .1091 .1709 .1760 .1565 .1427
-~ gdawson .2220 .4512 .5136 .4949 .4891 .4912
. .0797 .1818 .3637 .4717 .4197 .3856
Table 5-5. Distance to First Two Candidates in List
K
o At first glance, the data in Table 5-5 appear to contradict
f' the ideas presented above. 1In eight out of ten cases, the
| distance to the correct candidate has decreased by the
o
5 addition of windows (only dlambert and gdawson distances
; increase). But the distance to the second candidate has also
) increased as shown in Table 5-6. This table shows the diff-
erence between the pairs of numbers in Table 5-5. This
B difference increases for seven out of ten of the subjects,
‘\'
: increasing the confidence level that should be assigned to
i the ordering of the candidate list.
‘.l
)
"
e
A
2 5-8
:.
: [4
'.". \'—\'-_ -_'.-.':-,'.\(-_';', ';\"-.'.*."\ _'.\';\ ------------------------------- ~ . ‘-\". "‘._': Y *

Input Windows Used

' Photo 4 +3 +2 +5 +1 +6

L o llambert .1298 .2043 .2351 .2559 .2034 .2240
efretheim .1430 .1311 .0848 .0589 .1315 .,1788
mkabrisky .2594 .2356 .2947 .2766 .3045 .2911
ecrawford .0399 .1702 .0860 .1355 .1012 .1041
mdrylie .4236 .4931 .3315 .4233 .4098 .4018
mmayo .0293 .1212 .0352 .0479 .0289 .0815
mlambert .9979 .8057 .6822 .7381 .7373 .7390
jsillart .2980 .5520 .5005 .5536 .5023 .4790
dlambert .3509 .4968 .5166 .4945 .4614 .4910
gdawson .1423 .2694 .1499 .0232 .0694 .1056

Table 5-6. Difference Between Candidate 1 and 2 Distances

Up to this point, confidence level has been discussed but
no values of confidence have been calculated. Russel calcu-
lated a probability value to indicate how sure the AFRM was
of the candidate ordering, but this probability was based on
the similarity between an unknown individual and a candidate

ar (the actual distance number put out for the candidate) only
(Russel, 1985:4-43). It was not based on the difference
between distances to the rest of the candidates in the list
(like numbers found in Table 5-6). 1In addition, an equation
to calculate a confidence value may be dependent upon the
number of individuals in the database. Since insufficient
data are available at this time, no confidence values have

been calculated.

Window Performance Factors

A third test was performed to see if differences between

candidates could be increased further by adding window per-

formance factors. Russel assigned higher weighting factors

T
e

5-9

€ e el K I N ST AN e
,.'l"- LYWL YA A S SR A N

o By nd ad . v Rat Baw fa oy . “hacs A el T
O ~ \J Lo J0a WU w W W W W W O LW T A P iabiihl el AR % M 04 A A N

to the better performing windows before combining window

Pl Y W e

. measurements into a final distance value (Russel, 1985:4-43).
This gave the better windows more influence in the recogni-
tion process. In order to see what effect window performance
factors could have on the recognition performance, the window
factors were set to fixed values (not determined by contents
of database as done in Russel’s thesis). Table 5-7 shows
the two sets of performance factors tried. The second set
gives more weighting to the windows determined as best by
Table 5-4.

Window # Set 1 S

bt B A WS N 4

U W
=
Cooo0O
COMF OO
W WY

K Table 5-7. Window Performance Factors

No conclusions can be drawn by the test results because tr«

Lkl et N

separation of candidates increased for five subjects an:
decreased for the other five subjects when set 2 wa:s *: «
Both sets of window performance factors yeilded 17 . a3
correct recognition scores. A larger database .« -« -

. before window performance factors will make a 4 ‘.

the recognition performance.

. Summary

These test results indicate tha® **«¢ =t

at least as well as the prewvi~uc 3

S e L
NN N N e T e T
Lo Saradadadoisitanialotsiatiadatass o o -

S
:

o
:
3
5

3
2

3
S

Y,

(\PY)

._\vt ‘."l\.“l “M ‘."‘.‘

1

et

by g
¢
5

1y

.\ ‘\ t
(3 '!".! d

i

L)
M
L)

oivbapde
Rwat .

i
]

LI
ot gl

\

I LY S BN iRl

'4 5
iz
[4
'
| .
[
[

.

“-

<

IOO
————
e ——
S—
————
———

I

20
18

2

=

AW
41,

o

|

———

I

-

=
==

-Q - LI

Cy,
DO R R T B

PRSI N

L6

Il

—
——
—_

1.4

—
—_—
T
—

22 1

-

- .

DEOODEO

a

[

STANDARDS

NATIONAL BUREAU OF

MICROCOPY RESOLUTION TEST CHARI

~

NN

LV AL

NENS

SN

SN,

A% RS
VS N W

L3
Py

-
ad o

aa s, »”

- - . : ‘
AAnd ke

P q

-
s

A . LIV PR Y ol by’
At AR et At hfa Ala gla Ato a% ale ata'atatate ataalahle ats dba ale' cal e taa taitad val tad ¥ Pag bat ead ‘al tal et tat " ‘at s A U

|
E in all areas. The face location algorithm has been improved
-y with no adverse effect on the recognition scores. The :
recognition scores appear to be better than the scores shown
in Tables 2-1 and 3-3 however there are fewer subjects in the
database (presently at 15 subjects and still 100% correct).
In addition, all algorithms are faster and the AFRM can

process a wider variety of input scenes.

b gm o m e o

s e a w m_ X

5-11

. \‘l..k'-‘-

Fardt

PhTNCEO S

. 4>

=
e

5
F I Y I

4':‘n_l.l-_-_-_(_

VYV YY

. -
A

Fas
% .‘-

a8 & A
v

v

. T

o

o

Cd

T N T R PR PO Nk Py

Vi. Conclusions and Recommendations

This chapter presents conclusions of this thesis effort

and recommendations for further research with the AFRM.

Conclusions

The AFRM is proof of the capability of recognizing a
human face using a machine. The AFRM does this recognition
quickly and accurately. It has been based upon theories of
how the human physiology works, and attempts to model pro-
cesses that are physically realizable by the eyes and brain.
Whether the AFRM incorporates techniques actually used by the
human visual system is, of course, unknown since these brain
mechanisms remain undescribed at present.

During this thesis effort, the automatic face location
and windowing capabilities have been enhanced to the point
where the AFRM is completely autonomous. The algorithms have
been sped up to the point where real-time processing can take
place (it is only seconds between input and output). The
AFRM has been successfully implemented on a modern computer
with readily available hardware and software. These factors
make the AFRM more useful as a research and teaching tool,
and pave the way for further understanding of human recog-

nition capabilities.

T e T [RA A P MR
I I N B N A B AN NN A NN N,

~ \"‘&" AT S Py TN AN TN T AT A e

Recommendations

§ o In addition to the recommendations made by Smith and

) “ Russel that have not yet been implemented, the following

; areas should be explored:

? I. To further improve image pre-processing, the following

: suggestions:

ﬁ 1. 1Implement processing of color images to increase

3 information available to the recognizer, improve

) separation of the head from the background, and

L possibly allow definition of a better facial

i feature set.

o

] 2. Implement processing of images from a pair of

'3 cameras, utilizing binocular disparity technigues

; to separate the head from the background. This
as may also provide information useful to the

; o recognition process by having available, two

G images of the subject each taken at the same

; time but different angles.

4 3. Implement algorithms in a parallel hardware

: archetecture, creating a model of the human eye.

4 11. To improve face location capability:

9 1. Combine the two face location techniques discussed

E in this thesis to find more faces while reducing

»

false alarm rate. Table 5-2 shows that a com-

PN

bination of the two techniques could result in

90% of the faces being found, with only a single

false alarm.

. M-

2. Come up with a better set of facial features to
use in place of the dark areas now being used. X
III. To improve recognition capability:

1. Study effects of head rotation on recognition
score and find a way to overcome the present '
limitations.

2. Implement an algorithm with a truely constant
recognition time. The present algorithm is
very fast, but may slow down when the database
grows into the hundreds or thousands.

3. Thoroughly exercise the AFRM, training it with :

many more subjects to find out how it performs
and what its limits are. Develop algorithms to
overcome these limits.

q!* 4. Add more information to the recognizer by
improving the quality of the images sent to the
gestalt algorithm. This might be done by using
the brightness normalized faces without the
contrast enhancement. ;

5. Add more information to the recognition process
in the form of voice data, subject’s height,
eye color, etc.
IV. To improve availability of the AFRM as a research or
teaching tool:
1. Implement the AFRM on an IBM PC/AT computer.

An Imaging Technology, image processing board

exists which would support this effort.

oy :

6-3 K

ol el e L ;*Jw{"ff s L ol ;f;f: B N R LA it

V. To more closely model the human form of face recognition:
1. The AFRM is required to perform recognition on a
single, sometimes poor quality image and produce an output
list of candidates. There is some difficulty in expressing
the confidence level that should be placed on the ordering
of this list. Humans too have doubt sometimes in their own
recognition capabilities. A human does not usually have to
produce an answer from one quick look however. The human
has a continuous look-and-update recognition process. Any
doubt that exists in the viewers mind causes additional
acquisition and processing of data until finally, all doubt

is removed.

The AFRM should be given the same chance to acquire addi-

tional information that the human has. This could be in the
form of multiple images of a subject. The AFRM would first
need to be made as fast as possible to allow for real-time
processing (even a loss in accuracy to accomplish this might
be allowable). The greatest speed increase needed is in the
3 minute gestalt calculation. Appendix G shows how the 3
minute process can be reduced to 5 seconds. After imple-
menting Appendix G, an example of multiple image processing

might be as follows:

1. llambert 1. srogers 1. bgeorge 1. mmayo

2. mkabrisky 2. mmayo 2. srogers 2. srogers
3. srogers 3. efretheim 3. llambert 3. efretheim
4. bgeorge 4. mkabrisky 4. mmayo 4. llambert
5. mmayo 5. llambert 5. efretheim 5. bgeorge

Table 6-1. Output Lists for 4 Images of a Subject

.......

LA

P S S]

PP

Average positions of candidates for all four images, lowest
number wins first place in list (give them a number 6 if not

in top 5 of a list).

efretheim = (6+3+5+3)/4 = 4.25
srogers = (3+1+2+2)/4 = 2.0
mkabrisky = (2+4+6+6)/4 = 4.5
mmayo = (5+42+4+1)/4 = 3.0
llambert = (1+5+3+44)/4 = 3.25
bgeorge = (4+6+1+5)/4 = 4.0

Table 6-2. Calculation of Average Position

The top candidate in this case is "srogers" because this name
came up closest to the top of the candidate list on average.
The output list would be as follows:

srogers
. mmayo
llambert
bgeorge
efretheim

[SA0F VI S I g
. o e .

‘., Note that this technique would not require a candidate to
ever place in the top position, and would probably help to

increase the distance between false faces and real faces.

P D T S RN N A S PR N 2y
ool '_-'P.A'T;L).p}.n}:}@'.zﬁ’.t_A‘A‘.‘k.ﬁ o

>
-
-
»
2
ry
-
r3
-
-
-
(3
(3
[
3
-
-
(
-
g
-
3
-3
4
¥
(&
¥
-
=
-
-l
J
‘-
g
-

T

FarOWAT |

&

™ Appendix A

0 Equipment List

AL A A, A

w v Ay

) S

A R DA GE A

AN

- -
PRl Nl 3
o 2t o

P P R

.
’

L
L S I
>
J
—

BT SRR
T R R L L A A N AL N W NSRRI T AT AT BRI

YN A A A

LA Sl ek SR N

-
v 14
= 2" a'a

N

'l'l"‘.l
efataat

Py

L

XA

[

PR OW OV UN UN U DR Y UW S LT pia ety Bin Gty ata Bly JUo ava a0o BU Aba 8a Vo U iy aho AU ate'Ata"ala-gly giy AL Lo gty placato Al Aty gl gty gty aty- AL b tab At

&
The following equipment is used in this thesis:
1. Data General Eclipse S/250 Computer System
2. Data General Nova 2 Computer System
3. Octek 2000 video Processing Board
4. Dage 650 video Camera
5. Panasonic WV-5490 Monochrome Monitor
6. Tektronix 4632 video Hard Copy Unit
7. Micro-VAX Computer System
8. DeAnza Systems Color Image Display System
® 9. 1Imaging Technology Series 100 Image Processing Board
-".-
This equipment, with documentation, is available in the
AFIT Signal Processing Lab.
o

]

)

el i e

r e b il

Appendix B

[l el Nl

Software Listings

r XN

Page
A B~-2 SUB_DEMO.C Demonstration of (2) Real-time Subtraction
Techniques
B-4 MTI.C Demonstration of Automatic Target Detector
)) and Isolation Algorithm
o B-6 BRIGHT.C Demonstration of Brightness Normalization
Algorithm
N
N B-7 GRAPH.C For Graphing a Line From an Image
k. B-8 FACE_SIG.C The Face Location Algorithm Based on
q Facial Signatures
‘T
YT B-12 FACE.C The complete Autonomous Face Recognition
) System
X B-47 ITEX-100 A list of ITEX-100 routines used by FACE.C

-

All programs listed above can be run independently of FACE.C.

PNl il SRS B

In addition, FACE.C contains copies of the others as needed
! so that FACE.C is the complete AFRM. FACE.C must be linked

to the ITEX library as shown in the user’s manual.

s ut e a

T T N AT AT AT T o AT AT A T AT T T TR T T T v B U T G o e e N
'.__&', "J-.ﬁ‘\ f'l'd".\‘ I-f-f\ \.'sl\ \‘_ NN .‘~\-"J-\‘.>" W AP A T ._\,~ et ._._\ A S LN \

A R TITARTRTR WU TR ARATTARTAR ARTR W RRTRTLTRTR NRTRTeE TS

:
Ei
h. J T
* Name: SUB_DEMO.C Demo of real time subtraction techniques. *
- * *
]
d§) * Author: Laurence C. Lambert - 1987 *

Fkdddkh kR ok kAR kAR kA AR AR A RI AR AR RKIK IR KRR KRR KAk A Kk Rk Ak kkkhkkkkkk /
#include "sysSlibrary:stdio.h"

#include "dual:[itil00.itex])stdtyp.h"

#include "duaO:[itil00.itex]itex100.h"

[hkdkhdkkhkkhkhkkkkhkhkhkhkdkhhkhkkkhhkkhkhkkhkkhkkkhkhkhkhkkkkkhkkhhkkkkhkhkkhkhkhkkkkk/

main()
{
unsigned base = 0x1600;
long mem = 0x200000L;
int flag = 1, block = 8;
sethdw(base, mem, flag, block);
initialize();
subdemo(1);
subdemo(2);
}

/***/
#define A0 (short int)aO(i)/* These transformations are used in the */
#define alO(i) (i & Ox003f) /* feedback lut for real time subtraction */
#define Al (short int)al(i)/* demo. This software was created using */
#define al(i) ((i & Ox0fcQ) >> 6) /* "Toolbox" (see FG-100 user’'s */
#define DO(i) { data &= OxffcO; data |= (i & Ox003f); } /* manual. */
#define D1(i) { data &= Oxf03f; data |= ((i << 6) & Ox0fc0); } /**xxx */
#define INPUT 0x6000

#define abs(i) (((i) € 0) ? (-(i)) : (i))

xforml(addr, initial)
unsigned addr,initial;
{

register unsigned short
register short int data

D1(Al);

DO(abs(Al - A0));
return((unsigned)data);

}

[N

= addr;
initial;

xform2(addr, initial)
unsigned addr,initial;
{

register unsigned short
register short int data

D1(AO);

DO(abs(Al - A0));
return((unsigned)data);

}

[N

= addr;
initial;

T A AN T T AT AT AT AT A YT T A e

Y
ur
;
:« Jhhkkkkkkkkkkhkkkhkkkkhkkkhkkkhhkkkhkhhkhkkhhkkhkhkkkkhkhhihhhkhkrhkhkhkkkhkkkkik /
ﬁ subdemo(version) /* demo. of real time subtraction capabilities */
o Al int version; /* of the itex system. One of these algorithms */
T { /* may be used in the AFRM (see demo menu) */
i register unsigned i;/*kkkkkkkkdkikkkrkkkkhhhkikdkhhkhhkhhkhkkkkkrkhkkkkkkkk/
3 rtsubtract(0);
A% setlut(0,0);
ﬁ{ setinmux(6);
- if (version == 1) {
$ printf("\n\n\n Subtracting images as follows:");
printf("\n\n For Image = 1 to n, Display = 2-1,3-2,4-3....n-(n-1)\n");
printf("\n This is useful for detecting motion, as anything moving");
printf("\n will be slightly shifted from one frame to the next.");
MQ printf("\n When the target stops, it disappears from view.\n");
" grab(1l);
swap6();
setinmux(6);
for (i=0;i<0x1000;i++) write lut(INPUT,i,xform2(i,read lut(INPUT,i)));
))
2 else {
ﬁ: printf("\n\n\nPrepare background image (image #1) and press RETURN.");
% grab(0);
getchar();
stopgrab(1l);
swap6();
printf("\n\n\n Subtracting images as follows:");
printf("\n\n For Image = 1 to n, Display = 2-1,3-1,4-1,....n-1\n");
printf("\n This is used to display the brightness diff between two");
printf("\n scenes. The resulting ghost shows where the images vary.");
'® printf("\n Since 1 scene never changes, anything that is diff in");
e printf("\n the other will show up whether it is moving or not.");
printf("\n A target cannot hide by standing still.\n");
setinmux{6);
for (i=0:;i<0x1000;i++) vrite_lut(INPUT,i,xforml(i,read_lut(INPUT,i)));
}
grab(0);
printf("\n\n\n\n\n\n Press RETURN to continue.");
getchar();
stopgrab(l);

initialize();
sclear(0);
return;

}

/***/

a Ta W VL. T ¥ " aTaTe a8 r " T

/e e de e Je e e e e ke de sk ke de ke ke de e e sk e sk ok e ke sk g e vk ok 9k ke sk ok ok 3k i vk ok ok vk ok s o e 3k ok ok sk sk ok ok 7 ok ok sk ok e sk ok e ke

* Name MTI.C Demo of moving target detector *
* *
* Author: Laurence C. Lambert - 1987 *

hdkdekhkkkhkAkdkdhkkkhkhhkhkhkhkhkhhkhkhkAhhkkkhkkkkkkhkhhkkhhkhkhkhkhkhkhkhhkhkhkhkhhhkhkkkkkkkk/
$include "sysS$library:stdio.h"

#include "dua0O:[itil100.itex]stdtyp.h"

#include "duaO:[itil00.itex}itex100.h"

static int j,sx,sy,fx,fy;
/ ek v T sk vk e ok e ke vk vk ok ok vk vk ok ok sk ok ke ok ok gk ok ok ek sk gk ke ok ok ke ke ke ok sk sk ok ke ko k kok ok ok Ak kk ki ok k ki ok kokk ok k /

main()

{
unsigned base = 0x1600;
long mem = 0x200000L;
int flag = 1, block = 8;

sethdw(base, mem, flag, block);

initialize();

rtsubtract(0);

setlut(0,0);

setinmux(6);

for (j=0;j<0x1000;j++) write lut(INPUT,j,xform2(j,read lut(INPUT,j)));
printf(" looking for target.™); B
snap(1);

snap(1);

vhile((isolate(8,6,32)) != 1) snap(l);

printf("\n found target, acquiring 8 bit image.");
initialize();

snap(1);

}

7 FedekdRdokdededdodok gk k ok Kk k ok ok ok Kk ok ke g ke e e e e g e gk e o e e e de e ke e ek e/
int isolate(thresh,mode,size)

int thresh; /* threshold for detection of target */

int mode; /* 6 bit or 8 bit image */

int size; /* determines min. size of target and affects speed. */
{ /* size is either 16 or 32 pixels. */
int x,y,z;
sx = -1;
sy = -1;
fx = -1;
fy = -1; /* Find top of target hhkkhkkhkkkk kA khkhkkhkkkkkhkkdkhkkkhkkkhkkkk/
for (y=size-1; y <= 255; y=y+size){/* This subroutine finds location */
for (x = 0; x < 511; x=x+size){ /* of a moving object. If there is*/
z = brpixel(x,y); /* no moving object, or it is too */
if (mode == 6) z = z & 63; /* small then (0) is returned. If */
if (z >= thresh) { /* an object is found then sx,sy, */
sy = y-(size-1); /* fx,fy are set and (1) is re- */
x = 512; /* turned. This is done so that */
y = 512; /* all future work done on a scenex*/
11} /* is done on a greatly reduced */
o
5
]
Al
]
A
\
B-4 N
)

*"-'s~-\\.

o W

SN
'J..".IN.J\I

4o

FAA

AW WP YT I T ATNTETRCKN T T T WS

if (sy == -1) return(0); /* area of the scene and hence is */
for (y=256-size; y>(sy+size-1); y=y-size)(/* done faster. Thresh is */
for (x = 0; x <= 511; x=x+size){ /* high enough value to eliminate */

z = brpixel(x,y); /* video noise but lowv enough to */
if (mode == 6) z = z & 63; /* find small brightness differen-*/
if (z >= thresh){ /* ces that may occur between a */
fy = y + size-1; /* Find bottom. * moving object and its bkgnd. */
X = 512; JKdk ok ok ek ke de sk ok ok ok e sk A o Aok g e de ok ok ok ok ek ek /
y = -1;
11}

if (fy < (sy + size)) return(0);
for (x=size-1; x <= 511; xex+size){ /* find left side */
for (y = 0; y < 255; y=y+size){

z = brpixel(x,y);

if (mode == 6) z = z & 63;

if (z >= thresh){

SX = X - (size-1);

X = 512;
y = 512;
11}
if (sx == -1) return(0);
for (x = 512-size; x > (sx + size-1); x = x - size){

for (y = 0; y < 255; y = y + size){ /* find right side */
z = brpixel(x,y);
if (mode == 6) z = z & 63;
if (z >= thresh){
fx = x + size-1;
X -1;
y = 512;
11}

if (fx < (sx + size)) return(0);
return(l);

}
/***/
#define A0 (short int)a0O(i)/*These are the transforms used in the */

#define a0(i) (i & Ox003f) /*feedback lut for the real time subtract */
#define Al (short int)al(i)/*demo. This software was created by using*/
#define al(i) ((i & 0x0fc0) >> 6) /* "toolbox" (see FG-100 manual */
#define DO(i) { data &= OxffcO; data |= (i & Ox003f); } /* chapt 7) */
#define D1(i) { data &= Oxf03f; data |= ((i << 6) & Ox0fcO); } /*kkkkx/
#define INPUT 0x6000

#define abs(i) (((i) € 0) ? (-(i)) : (1))

xform2(addr, initial)

unsigned addr,initial;

{

register unsigned short i = addr;
register short int data = initial;
D1(AO);
DO(abs(Al - AD));
return({(unsigned)data);

[Rdekddkkddhkhkhkkhhkhkhhhkhkhkhkhkhhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkdkhkhkhkkhkkkhkhkhkhkkkkkkkkkkhkkhkkkk /

o L A L A T T o e T AT T L. N G N
VA N A e N

S B N I s . P VAL R N AT

NV avalararaias R YR g = it et agen "%

e e e Y

a

[A

-~

llllAL'..

............

/e e vk 3 ok vk e e e vk vk sk sk ok e vk vk vk 3k ok o gk ke ke vk o ok ok sk sk dk gk ok ke dk ok ok vk ok ok ok ke ok ok ok gk vk ok ok ke vk ok sk ok ok ok ke ok ok vk ok ok ok ok

* BRIGHT.C : Brightness normalization algorithm *
* vill process whatever is on monitor. *
* Author : Laurence C. Lambert - 1987 *

********************’k***/

#include "sysS$Slibrary:stdio.h"
#include "duaO:[itil00.itex]stdtyp.h"
#include "dua0O:[itil00.itex)itex100.h"
struct array{

int data[512];
}s

static struct array picf{512},norm{512];
static int col[512);
Jdkdkddkdodk ok kk ok kk kg kkok ko ko kkkk ko Kk ok ok dkd ok kkkkd ke kkkkdkdedkdkdkkkkk /

main()
{
unsigned base = 0x1600;
long mem = 0x200000L;
int flag = 1,block = 8;
int pix,avg,diff,neigh,x,y,i,j;
sethdv(base,mem, flag,block);
printf(" takes about 15 seconds to process. please wait...");

for (y=0; y<480; y++) { /* read from video memory */
rhline(0,y,512,pic{y].data);

)
y = 03
for (i=0; i1<512; i++) {
col[i] = O; /* setup all columns for first y value */

for (j=y; j<y+9; j++) col{i] += pic[j].datali];
for (y=1; y<471; y++) {

for (i=0; i<512; i++) { /* nov all columns calculated faster */
col[i] += (pic|y+8].datali] - pic[y-1].data[i]);

}

x = neigh = 0; /* setup first neighborhood */
for (i=x; i<x+9; i++) neigh += colli];

for (x=1; x<503; x++) { /* now all other neigh are calc faster */

neigh += (col{x+8] - col{x-1]);

avg = neigh/81; /* these four lines are the heart of it all */
pix = pic[y+4].data|x+4]; /* neighborhood size = 9x9 */
diff = pix - avg; /* center size =1 */

pix = 128 + diff;
/* for awesome effects try: */

if (pix <€ 0) pix = 0; /* other sizes, */
if (pix > 255) pix = 255; /% pix=128+multiplier*diff,*/
norm{y+4).data{x+4] = pix; /* thresholding result, */
1) /* ete... */

for (y=0; y<4B0; y++) {
vhline(0,y,512,norm|y].data);
}

}

/ e e e g e ke vk vk ok sk gk ke ke vk ok sk ok ok sk sk ok ok ok s sk ok 3k gk ek vk ok ok vk ok gk ok ok ok ok ok ke ke ok ok ok e ok ke ok ok ok ok Ak ok kb ok ke ke ke ke ok /

J-] . @ " ‘.\' ‘)\ -".-“.-" . -.‘ -_,\ .\‘) > \;l\-b\;il' --'\- AR . ‘.\'-. IS

LN
\l

‘e aUL Al AR ARy 'Rle Al BU, Ao Ate JAte BN Bba e SRR S J

/e Fe de e e ke e e v d vk e e sk e e v e 3k e ke 3k g vk e de sk e v sk ke ok e ok e ok e vk ok e sk ok vk sk sk b e vk ke e dk ok sk ok sk vk ok o sk o ok ok ok ok ok ke ok

* Name GRAPH.C *
* *
* Author: Laurence C. Lambert - 1987 *

kkdekhkhkhkkhkhkhkkkhhhkhkkhkhkhkhkkhkhkhkhkkhkkhkhkhkhhhkhkhkhkhkhkhhkhhkkkhkhkhkkhkhkhhkkkkkkkkkkkk /

#include "sys$library:stdio.h"
#include "duaO:[itil00.itex]stdtyp.h"
#include "duaO:[itil100.itex]itex100.h"
/Kdededededededededdedededeok sk ok e e ok e ded ok ok ok ok A e e ek ke e ek ke ke k ok kA ke ke k kk /
main()
{
int i,m,x,y,z,numline,o0ld, nev;
unsigned base = 0x1600;
long mem = 0x200000L;
int flag = 1, block = 8;
sethdw(base, mem, flag, block);
carea(0,0,512,255,0,256,512,255);
numline = 256;
printf("\n\n\n which line to graph?(0-255)");
scanf("Xd",&numline);
wvhile (numline > -1){
printf("\n Enter -1 if Okay, or enter new line to graph(0-255).>");
line(O,numline,511,numline,255);
y = numline;
scanf("%d",&numline);

}
aclear(0,0,512,255,175);
printf("\n\n Plotting selected line.");
y =y + 256;
old = 0O
for (x=0; x<510; x++) {
newv = brpixel(x,y);
if (newv < old) {
for (m=new; m<old+1; m++) {
bwpixel(x,256-m,0);
}}
else {
for (m=o0ld; m<new+1l; m++) {
bwpixel(x,256-m,0);
)}

old = nev;

}
line(0,y,511,y,0);
}

T A AT LA e e,
CAr :‘!f‘:'fu(:'l' ' o L(L{}_{L{L{A.Q-{A.‘ﬁ-fz-'..h{,hl " ot

AN I

e e T TRt Mt et at e
VOSPR 8 DR s Tty Jiy VAP e Vi

/e e v e e e v e vk de v sk e e sk ok sk T 3k vk e vk ok sk A ok vk ok vk ok o o vk ok 3 ke dk vk sk vk ok ok vk e sk ke sk ok e sk g vk ok ok ke ok ok ok ok ok vk ok ok ok ok ok

* Name FACE_SIG.C face finder that looks for characteristic *
ROAN * brightness variations (signature) in a thin*
et * strip of data from the input scene. *
* Author: Laurence C. Lambert - 1987 *
* Based upon technique used on the Eclipse/Nova by E. Smith *

Fededddkddk g gk ko dek sk k ok k ko kddkk kA kkkdkkokkddkdekkkhkdkkkkkkkkhkdkkkhk Ak kkkk /
#include "sysS$Slibrary:stdio.h"

#include "duaO:[itil00.itex]stdtyp.h"

#include "duaO:[itil00.itex]itex100.h"

int px(8],pyi8],pz[8];

static int sx,sy, fx, fy;
7 Jedede e de ek ok ok ok ok ok ok e e e e e ok e ok ok ke sk A e ok ke ok ok ok ok ok ok ok ok ok ek ok ok ok ok ek ok ke ok ek o/
main()
{
unsigned base = 0x1600;
long mem = 0x200000L;
int flag = 1, block = 8;
sethdw(base, mem, flag, block);
sx = 0;
sy = 0;
fx = 511;
fy = 255;

carea(0,0,511,256,0,256,511,256);

printf("\n\n Smoothing image.");
blur(0,0,512,256,3);

if (findface() != 1) printf(" Face not found.");

) /e de e ke e Fe 3k e vk e vk ke sk 3k ok ke vk e sk vk ke vk e sk ke vk ke ok sk ok vk e 3k e ok vk e sk ok ok v e vk ke ok ke e ok ok g ke gk ok e sk ke ok ok ek e dke e ke ke /

int findface()/*looks for face in image. returns 1 if found. O if not*/
{ /* masks face with ellipse, and updates sx,sy,fx,fy.*/
int x,y,z,j; / Jedde e e e dede ok o ek ok ek ko ok ok ok ok e e ok ok vk sk ok ok e ek ok ok ok ok ok ok ok ok e ok e ke /
int size,bright,prevz,point,direc,prevdirec,nz;
int lislope,rislope,loslope,roslope,test,radius,center;
printf("\n\n looking for face...");
for (y=sy; y<(fy+l); y++) {
direc = 1;
test = O;
bwpixel(0,y,250);/* gives indication of where facefinder is working */
z = brpixel(sx,y);
for (x=sx; x<fx; x=x+2) {
prevz = 2;
prevdirec = direc;
z = brpixel(x,y);
if (z > prevz) direc = 1;
if (z < prevz) direc = -1;
if (z == prevz && direc < 0) direc =
if (z == prevz && direc > 0) direc =
point = test;

direc - 1;
direc + 1;

B-8

>

MRS N AN T TN AT T

P 0 o o

P

. a¥e"."s s s

T h SN NEN

WYY YXED T

-
A o le®e

~ oA A LA

[l Wl

. a%a" Y A &t b a4 e Awa dta- “Al Ny R tad *al val vai ‘ald tal & U

switch(point) {
case 0:if (direc < O && prevdirec > 0) { /* possible point 1 found*/

test = 1;
px[1l]) = x - 2;
pyll] = y;
pz{1] = brpixel(px[1],pyl[l]);
break;
case 1:if (direc > 0 && prevdirec <0) { /* possible point 2 found */
test = 2;
px[2] = x + (prevdirec - 1); /* use center of plateau */
pyi2] = y; /* if on a plateau. */
Pz[2] = brpixel(px[2],py[2]);
bright = pz[l] - pz[2];
if (bright < 10) {
test = 0; /* not enough distance between pts 1 and 2. */
x = px[2];
}}
break;
case 2:if (direc < O && prevdirec > 0) { /* possible point 3 found*/
test = 3;
px[3] = x - (prevdirec + 1); /* use center of plateau */
py[3] = v; /* if on a plateau */
pz[3] = brpixel(px[3],py[3]);
break;
case 3:if (direc > 0 && prevdirec < 0) { /* possible point 4 found*/
test = 4;
px[4] = x + (prevdirec - 1); /* use center of plateau if */
pylé4] = y; /* on a plateau. */
pz[4] = brpixel(px[4],pyl[4]);

if (pz[3]-pz[4] < bright/3 || abs(pz[2]-pz[4]) > bright/4) {
test = 0; /* not enough diff between points 3 and 4 or */
x = px[2); /* too much variation between points 2 and 4. */

}}

break;
case 4:if (direc < O && prevdirec > 0) {/*possible point 5 found. */
test = 5;
px[5]) = x - 2*prevdirec;
py[(3] = y;
pz[5] = brpixel(px[5],py[5]);

&R

if (abs(pz[1]-pz[5]) > (bright/2)) test = 0;/*too much 1-5%/

lislope = (pz[3] - pz[2])/(px[3]) - px[2]); /* test slopes */
rislope = (pz[3] - pz[4])/(px[4] - px{3]);
loslope = (pz(1] - pz[2])/(px[2] - px[1]);
roslope = (pz[5] - pz[4])/(px[5] - px[4]);

/* check var of inner,outer,lft out-in, rght out-in slopes*/

if (lislope>(l.4*rislope) || rislope>(l.4*lislope))test = O;
if (loslope>(l.4*roslope) || roslope>(l.4*loslope))test = O;
if (loslope > (3*lislope) || lislope > (3*loslope))test = 0;
if (roslope > (3*rislope) || rislope > (3*roslope))test = 0;

v gav e @as gad Fob g ™ » 'a B's.0'm e ke A0 ada aea gl alo i afatat. ta i ta b, S Vb Valh vod sad v K] " S ® Sl ©

| - -

)
N\ /* test physical distance ratios between points */
if ((px[4]-px[3]) > (1.3*(px[3]-px[2]))) test = O;
i, if ((px[3]-px[2]) > (1.3*(px[4])-px[3]))) test = O;
'S 1f ((px[2])-px[1]) > (1.5*(px[5]-px[4]))) test = O;
if ((px[5)-px[4]) > (1.5*(px[2]-px[1]))) test = O;
o if ((px[5]-px[1])) < 32) test = 0; /* face too small */
: if ((px[5]-px[1]) > 150) test = O0; /* face too large */
X if (test == 0) (
N X = px[2];
X direc = 1;
}}
5 break;
p case 5:size = 1.4*(px|[5] - px[1])); /* approx scale of whole face */
/* test to see if whole face on screen */
) if ((px[3]-(size’/2)) < 0 || (px[3)+(size/2)) > 511) test = O;
if ((pyl[3]-(sizes2)) < O || (py[3]+size) > 256) test = O;
if (test == 0) { /* wvhole face not on screen */
x = px[2];
direc = 1;
. break;
:)
* direc = 1;/* okay, look for nose mouth signature. */
nz = pz[3];
for (j=(py[3]+1); j<(pyl3]+size); j++) {
v - prevdirec = direc;
- prevz = nz;
(. nz = brpixel(px[3],j);
- if (nz > prevz) direc = 1;
. if (nz < prevz) direc = -1;
- ‘. if (nz == prevz && direc < 0) direc = direc - 1;
Y e if (nz == prevz && direc > 0) direc = direc + 1;
'j if (direc < 0 && prevdirec > 0) { /*possible point 6 found*/
N test = 6;
" px[6] = px[3];
b pylé] = j-1;
pz{6] = brpixel(px[6],py[6]);
¢ if (PY[6é-PY|3]<(le3l—le21)/2||PYlGI-PYI3|>PX[4l-PX[2]) {
4 test = 0;
3 x = px[2]};/*point 6 physically too close to point 3 or */
Q direc = 1;/*point 6 physically too far down. */
3 break;
)
j = 512;
] }}
if (test == 6) { /*look for point 7 */
direc = 1;
nz = pz|[6];
for (J=(pyl6}+1); j<(py[3]+size); j++) {
) prevdirec = direc;
. prevz = nz;
3 nz = brpixel(px[3},3);
. if (nz > prevz) direc = 1;
) if (nz < prevz) direc = -1;
if (nz == prevz && direc < 0) direc = direc - 1;
if (nz == prevz && direc > 0) direc = direc + 1;
: .?";"
B-10

e s ae

o

«, 8y L vt P -, Lot . PO I R S P L N A AT I N o
. -'.f’.f." 7, l':’:ll" -:" ".I'v/ "'-"~ ‘-"‘\.{\"h .'-I‘- ~ "-J'- ‘-"- I Iy) s, f\' "x V’ » 7. 'v N

NN N
* L)

L e -

U a% a'® 2% 'R 2% 2’8 avd AT 2 h avh a¥d T I R T S T I Ty TICVTYRY touaaeh il TS - v alld®

if (direc > O && prevdirec < 0) { /* possible pt. 7 found*/

test = 7;
= px(7] = px[3];
b0 pyl7] = j-1;

pz[7] = brpixel(px[7],py[7]);
if ((pz[6]-pz[7]) < bright/2) {
test = 0; /* not enough bright diff between points 6,7 */

x = px[2];
direc = 1;
break;

)
j = 512;
(t

}1)
if est == 7) {

j = pyl2];

vhile (brpixel(px[2]),j+2) < brpixel(px[2],j)) J = J + 23
vhile (brpixel(px[2],j-2) < brpixel(px[2],j)) j = j - 2;
py[2] = j; /* the correct vertical center of the eyes */

center = py[2];

sx = (px[1l]+(px[3]-size/2))/2; /* reset edges of face. */
fx = (px[5]}+(px[3)+size/2))/2;

Sy = center - 9*%size/10;

fy = center + 9*size/10;

radius = size;
circle(px[3],center+256,radius,1,2,255);
for (j=px[1}; j<px[5]; j++) bwpixel(j,pyl[1],0);
for (j=py[3]; 3i<pyl7]; j++) bwpixel(px[3],j,0);
for (j=1; j<B; j++) bwpixel(px[j],py[jl],250);
rectangle(sx,sy+256, fx-sx, fy-sy,255);

.g fill(sx+1,s8y+257,255,255);

e £i11(£fx-1,sy+257,255,255);
£ill(sx+1,£fy+255,255,255);
fill(fx-1,£fy+255,255,255);
return(l);

if (test != 7) { /* point 7 was never found. */

test = 0;
= px[2];
direc = 1;
}
break;
}}}
return(0);
}

/***/

N ™

Nt P e L N T e e e LN T e e T T N "~ e e e A e e
) .(w'z_ e '.r o, .-,.- r-"a.-r_ (ol .-z- Py a'-r J‘ .'r*—'“ “w -r At ‘-r*.'-.‘_- T

B8 na \'\-\"\

. "*‘s.’x"\ e

i

Eo —o i o aan o o

-2,
SN
l~{~

'

(s O ¥R gy K’ ® Bae (a0 Bav 8% Sac hat wa’ 44 0 ' a'g a‘ » ry

/ % e 3 v de e e gk e de e de vk sk sk gk g e sk sk ok ok ke ke ok ke ok ok Sk sk vk sk ok sk ke sk sk gk ke vk vk ok gk ok ke vk vk dk gk sk sk ke gk o ok ok ok vk ok ok ok ok e ok ok ok ok

* Name FACE - AUTONOMOUS FACE RECOGNITION MACHINE *
* *
* Author: Laurence C. Lambert - 1987 *
* Based on the Data General (Eclipse/Nova) AFRM by E. Smith *

Khkkhkhkhkhhhhkhkhkhkkhhhkhhkhkhkhkhrhhhhkhkhkhkhhkhkkhkdkhkhkhkkhkhkkhkkkkhkikkhkhkhkhkhkhkkhhkhkhk/

#include "sysSlibrary:stdio.h"
#include "duaO:[iti100.itex]stdtyp.h"
#include "duaQ:[itil00.itex}itex100.h"
#include <math>
static int option,test,sy,sx,fy,fx,nf,x,y,z;
int i,k; /* i = size of tlist, k = size of ilist */
struct list{
char name[10};
int num;
int winlx,vinly,win2x,vin2y,win3x,vin3y;
int winé4x,windy,vinSx,windSy,winéx,winéy;

)3
static struct list tlist{400} - (0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static struct list ilist{100] - (0,0,0,0,0,0,0,0,0,0,0,0,0,0};

static double gauss[257};

JhFkkdkkhkhkkhkkhkhhkhkkhhhkhkhhkkkhhkhkhkkhkhhkhkkhkkkkkkkhkkkkkkkkkkkhkkkhkkkrkkkkkkkhkhkkkk /

main() /* 23 */
{

unsigned base = 0x1600;

long mem = 0x200000L;

int flag = 1,block = 8;

sethdw(base,mem, flag,block);
initialize();

sclear(100,1);

cls();

printf("\n Initializing hardvare and reading dbase files.");
printf("\n Please turn on the video monitor and the camera.”);
text(120,200,0,8,0,"AFRM");

text(110,415,0,1,0," AIR FORCE INSTITUTE OF TECHNOLOGY");
text(110,430,0,1,0," SIGNAL PROCESSING LABORATORY");
text(110,445,0,1,0,"AUTONOMOUS FACE RECOGNITION MACHINE");
text(110,460,0,1,0," 1987");

del();

i = readfile("[face.dbase]train.dat;1",tlist);

k = readfile("[face.dbase]others.dat;1",ilist);

rtransa(); /* setup gaussian xform for later use in gestalt() */
nf = sx = sy = 0;

fx = fy = 511;

menul();
B-12
QY \"\f\ "\" 's'\ \' - "'—\' . N N TN A T SN \"\':\"'-:‘. -----------

A

-
»

-

V.

4’y

. P’
PRl R B By W W

* AL P

TN NN

Jhkkkkkkkhkhkhhkhkkhkhkkhhkhkkhkhkkhkhkhkkhkhkkhkkhkkkhkhkhhkhhkkhkhkhkkhkhkkkhkhkhkhkkhkhkhhkkhhkkkk/
menul()

{

char t2[30],t3[30]),temp[10},ch{2]); /* j,1 and m ar~ counters */

int ver|5],j,1,m; /* ver|[l-4]
int r;
int rot]{5]) = {-20,-10,0,10,20};
for(;;)
cls();
printf("\n
printf("\n

= file version numbers to train on.*/

AUTONOMOUS FACE RECOGNITION MACHINE\n ");

kxkk% MAIN MENU ****x\n ");

printf("\n 1:ACQUIRE IMAGES");
printf("\n 2:FIND FACES");
printf("\n 3:GESTALT AND IDENTIFY / SAVE\n");
printf("\n 4:DISPLAY CONTENTS OF DATABASE");
printf("\n S:DELETE A SUBJECT");
printf("\n 6:DELETE AN IMAGE");
printf(”\n 7:TRAIN\Dn");
printf("\n 8 : DEMONSTRATIONAR");
printf("\n 0:QUIT\n\n\n\n\n\n>");
scanf("%d”,&option);
cls();
switch(option){
case 0O:

printf("\n\n saving DBASE files...");
vritefile("[face.dbase]train.dat;1",tlist,i);
vritefile("[face.dbase]jothers.dat;1",ilist,k);
cls();

printf(" Please turn off the video monitor and the camera.");
printf("\n\n\n\n\n\n\n\n\n\n\n\n");

return;
case 1:

menu2();

break;
case 2:

printf("\n Sharpen image? (Y/N) >");
scanf("%s",ch),

if (ch[0] == 'y’ [| ch[0] == 'Y") {

sharpen(sx,sy, fx-sx, fy-sy,3);

)

facemap();

break;
case 3:

facerec(1l);

break;
case 4:

display(tlist,i,8);

display(ilist,k,5);

prtc();

break;

R N N T N S N T T
\-ffvl'

AN NN A AN AT N

rEr e

case 5:
. display(tlist,i,8);
e, printf("\n\n *kkkx* DELETE SUBJECT *%%x%").
printf("\n\n Are you sure (Y/N)? >");
scanf("Xs", temp);
if (temp[O] != 'Y’ && temp{O] !'= ’'y’) break;
printf("\n\n Do you wish to save ");
printf("subject’s training pictures as .IMG files (Y/N)? >");
test = 0;
scanf("%s", temp);
if (temp[O] == 'Y’ || temp[O] == 'y’) test = 2;
printf("\n\n Enter subject’s name. >");
scanf("%s", temp);
printf("\n");
for (j=1; j<(i+l); j=j+4) {
if ((stremp(tlist[j].name,temp)) == Q) {
if (test == 2) {
1 = 0; /* look for highest existing version of .IMG file. */
for (m=1; m<(k+1); m++)
if (stremp(ilist[m].name,temp)==0 && ilist[m].numd>>1) l=ilist{m}.num;
=14+ 1; /* add 1 to highest version to get new version. */
for (m=1; m<5; m++) { /* put 4 new versions into ilist. */
k =k +1;
ilist[k].name[0] = '\O’;
strcat(ilist[k].name, temp);
ilist[k].num = 1;

AN LS
s

5."."-‘l [0 8

ilist[k].winlx = tlist[j+(m-1)].winlx;
ilist(k].winly = tlist[j+(m-1)].winly;
ilist|k].win2x = tlist{j+(m-1)].win2x;
ilist[(k].win2y = tlist[j+(m-1)].win2y;
ilist{k].win3x = tlist[j+(m-1)].win3x;
ilist[k}.win3y = tlist{j+(m-1)).win3y;
ilist[k].windx = tlist[j+(m-1)].winéx;
ilist[k].windy = tlist[j+(m-1)].windy;
ilist[k].win5x = tlist[j+(m-1)].win5x;
ilist[k].win5y = tlist[j+(m-1)].win5y;
ilist[k].win6x = tlist[j+(m-1)].winé6x;
ilist[k].winby = tlist{j+(m-1)].win6y;
1+
)

=1 - 43

for (m=0; m<4; m++) { /* now create .IMG and .PIC file names, */
t2[0) = "\O’";

t3[0] = '\O’;

strcat(t2,"|[face.dbase]\0");

strcat(t2,tlist[j].name);

strcat(t3,t2);

strcat(t2,".pic;\0");

strcat(t3,".img;\0");

ch(1l]) = '\O";

ch[0] = tlist[j+m).num + '0’; /* convert int to char */
strcat(t2,ch);

ch[0] =1 + ‘0';

strcat(t3,ch);

copyfile(t2,t3); /* copy .PIC > .IMG */

B-14

'y
30

rre ety

YENY YR

o hENDFRY

o o Q6 g 4

By«
R
n'
>
i
“n
a,

LRI P N -
.,\ \’ﬁ\(\ ’

¢

1=14+1;
}}

for (m=j; m<(i-3); m++) tlist[m] = tlist[m+4]; /*del from

printf("\n");
i=i-4;
for (m=1; m<5; m++) { /* delete .PIC files. */
t2[0) = '\O0’;
strcat(t2,"[face.dbase]\0");
strcat(t2,temp);
strcat(t2,".pic;\0");
t3[0] =m + '0’;
t3[1}) = '\O’;
strcat(t2,t3);
printf("%s%s","\n Deleting ",t2);
delete(t2);

¥

j =1+ 2; /* forces end of loop through tlist */
test = 1; /* indicates that subject was found */
}}
if (test != 1) printf("\n\n Subject not found.");
else printf("\n\n Subject deleted.");
prtc();
break;
case 6:
display(ilist,k,5);

printf("\n\n *x%%x%x DELETE IMAGE **x*%");

printf("\n\n Are you sure (Y/N)? >");
scanf("X%s", temp);
if (temp[O] !'= 'Y’ && temp[0] !'= ’y’) break;
printf(”\n\n Enter subject’s name. >");
scanf("%s",temp);
printf("\n\n Enter version number. >");
scanf("%s",ch);
printf("\n");
test = 0;
for (j=1; j<(k+1); j++) {
if (stremp(ilist][j].name,temp) == 0) {
if (ilist{j].num == (ch{0] - '0")) {
t2[0] = '\O’;
strcat(t2,"[face.dbase]\0");
strcat(t2,ilist[j].name);
strcat(t2,".img;\0");
strcat(t2,ch);
printf("%s%s","\n Deleting ",t2);
delete(t2);
for (m=j; m<k; m++) ilist{m} = ilist[m+1];
k =k - 1;
j=k+2;
test = 1;
11}
if (test !'= 1) printf("\n\n Image file not found.");
else printf("\n\n Image file deleted.");
prtc();
break;

tlist*x/

case 7:

A N display(tlist,i,8);
A display(ilist,k,5);
o printf("\n\n *kxkk TRAIN Faxsk);

printf("\n\n Enter person’s name. >");
scanf("Xs", temp);
test = O;
for (1=1; 1<(i+1); 1=1+4) /* test name */
if ((strcmp(tlist{l].name,temp)) == 0) test = 1;
if (test == 1) {
printf(”\n That name already exists in the training file.");
prtc();
break;
}
for (1=1; 1<(k+1); 1l++)
if ((strcmp(ilist|[l].name,temp)) == 0) test = 2;
if (test = 2) {
printf("\n There are no image files with that name.");
prtc();
break;
}
printf("\n\n You must enter 4 valid (and unique)");
printf(" file version numbers.");
printf("\n (Enter -1 to quit training procedure)");
for (j=1; j<5;5 j++) {
printf("\n Enter version number for training file # ");
printf("ZdZs",j,">");
scanf("%s",ch);
ver[j] = ch[0] - '0";
' B if (ver[j] > 0) {
= test = 0;
for (1=1; 1<j; 1l++) {
if (ver[l] == ver[j]) {
display(ilist,k,5);
printf("\n\n You already selected:");
for (m=1; m<j; m++) printf("%s%d"," ",ver[m]);
i=3-1
test = 1;
1}

if (test '= 1) {
for (1=1; 1<(k+1); 1l++) {
if (stremp(ilist[1l].name,temp) == O && ilist[l]}.num == ver[j]) {
test = 1;
1 =k + 2;
}}

L] R
LN

~

N N e e e e e e e e L
DR T S UL ML N R R e N . e At

e T T T e T T e T SN N R S RO LT T T8 T
\‘.'l\k‘.’l\.’lﬁ‘l‘n\ h VATIRER .n:hh-\:;hl.'z RTINS v VPR A N Y 2 = " N Yy RV

l
i
7 if (test == 0) {
‘; display(ilist,k,5);
9 ,f}' printf("%sXd","\n\n File version #",ver[jl]);
. - printf(" not found, try another."); *
if (j 1= 1) (
v printf(" (You already selected:");
j for (1=1; 1<j; 1l++) printf("%sxd"," ",ver[l]);
X printf(")");
}
' i=3-1
11}
Ko else j = 5;
:)
- if (j == 6) break;
0] for (j=1; j<5; j++) {
2 : !
. i=14+1;
for (1=1; 1<(k+1); 1++) {
> if (stremp(ilist[l].name,temp) == O && ilist[l]).num == ver[j]) (
- tlist[i] = ilist[1l]; /*find proper gestalt file in ilist,*/
1?- tlist(i].num = j; /*put in tlist, */
- for (m=1; m<k; m++) ilist{m] = ilist{m+1];
; k = k - 1; /*delete from ilist, */
. })
a t2[{0]) = '\O’; /*create .PIC and .IMG file names, */
g t3[0} = "\O’;
X strcat(t2,"[face.dbase]\0");
o strcat(t2, temp);
o strcat(t3,t2);
oy strcat(t2,".pic;\0");
(o strecat(t3,”.img;\0");
S ch[1l] = '\O';
- ch[0] = ver[j] + *0";
N strcat(t3,ch);
-~ ch{0] = j + '0";
" strcat(t2,ch);
’ printf("\n");
&8 copyfile(t3,t2); /* copy .IMG > .PIC */
" printf("%s%s","\n Deleting ",t3);
. delete(t3); /*and finally, delete the .IMG files */
-)
f printf("%sXsXs","\n\n The training file now contains <", temp,">.");
prtc();
L break;
> case 8:
- menul();
¥ break;
4 default:
< break;
.))
")
. e
- e
N B-17
e
N
g o e s e L O)

Y

'.' =

.A_.A..A.A.A

" . ‘_hd

[k dk ok ddkkkkokdkkhkkkkkkkhkhkkhkkkhkkkkkkhkhkkhkkhkhkhkhkkhkhhkkhkkhkkkkkkkkhkkkkkkkkkkkkk /

menu2()
{
int cam;
char namel50),t1150},temp|[2];
for (;;) {
cls();
printf("\n *kkk*x ACQUISITION OF IMAGES ***%*\n");
printf("\n O:RETURN TO MAIN MENU\n");
printf("\n 1:STATIONARY TARGET");
printfi("\n 2:MOVING TARGET");
printf("\n 3:LOAD IMAGE FROM MEMORY\n");
printf("\n 4:SAVE IMAGE IN [FACE]\n");
printf("\n 5:SET CAMERA PORT");
printf("\n 6:CAMERA CHECK");
printf("\n 7:RE-INITIALIZE HARDWARE\n\n\n\n\n\n>");
scanf("%d",&option);
cls();
switch (option) {
case O:
return;
case 1:
nf = sx = sy = 0;
fx = fy = 511;
getchar();
printf("\n *kkkk STATIONARY TARGET #*¥k%*"),
printf("\n\n Acquire new image (Y/N)? >");
scanf("%s", temp);
if (temp{O] == 'Y’ || temp[O] == 'y’) {
grab(0);
prtc();
stopgrab(1l);
)
break;
case 2:
nf = 0; /* this algorithm sets sx,sy,fx,fy to target’s location */
printf("\n **%x*%% MOVING TARGET ****x*\n\n");
getchar();
printf("\n Prepare background image and press RETURN to continue. >");
waitvb(); /* The aclear() is used in this routine to */
grab(0); /* clear the 1st 16 columns of the image */
getchar(); /* because of an X SPIN delay of the image.*/
stopgrab(1); /* Therefore the 256x512 image is really */
setreg(X SPIN,0); /* only a 256x496 image. */
snap(1);

aclear(0,0,16,768,0);
setreg(SCROLL, 256);
printf("\n\n Prepare subject image and press RETURN to continue. >");

vaitvb(); /* Scrolling 256 stores the background image */
grab(0); /* off the screen area. Scroll O brings it */
getchar(); /* back. I have used the setreg function instead */
stopgrab(1); /* of scroll because of the problem with defini- */
setreg(X SPIN,0); /* tions in the library. (see the comment */
snap(1l); /* obtained when linking this program). */

a RN A -

PGP

b A TR

Ld

R

Ra® Bav (o v got Sav fa¥ Nat Us' be 00 gla g Ty "l Sal' », (Aonal - Ble 00 o Aia Ate 4’ e A

aclear(0,0,16,512,0);

setreg(SCROLL,0);

printf("\n\n Subtracting images and locating target.");
oparea(0,256,512,255,0,0,512,255,5,1); R

if (isolate(20,8,16) == 0) { /* Isolate target from surroundings */

printf("\n Could not find target. Press RETURN to continue. >");

getchar();

sx = sy = 0; ’

fx = fy = 511; !

break;

}

carea(sx+1,sy+257,fx-sx-1,fy-sy-1,sx+1,sy+1,fx-sx-1,fy-sy-1);
aclear(0,255,512,256,0);

break;
case 3:

printf("\n *%x%*x* LLOAD IMAGE FROM MEMORY *#%%x%%x").
printf("\n\n\n Enter complete file specification.");

printf("\n ({directory.subdirectory]filename.extjversion)\n\n >");
scanf("%s", name);

printf("\n\n\n Loading file...");

if (readim(0,0,511,480,name,"nocomm") == -1) {
printf("\n\n\n File not found.");
prtc();
}
nf = sx = sy = 0;
fx = fy = 511;
break;
case 4

t1[0] = '\O’;

strcat(tl,"[face]\0");

printf("\n Will save ****x*xENTIRE****** gcreen as 8-bit image in ");
printf("directory [FACE].\n\n\n Enter name (including EXT)\n\n >");
scanf("%s", name); /* 1 want to make sure that the DBASE */
strcat(tl, name); /* directory is not touched by this save.*/
printf("\n\n\n\n Saving image..."); /* Hence the directory name is*/
saveim(0,0,511,480,0,t1,"nocomm"); /* not allowed to vary. */
break;
case 5:

printf("\n Select camera port (0,1 or 2) >");

scanf("%d",&cam);

setcamera(cam);

break;
case 6:

printf("\n\n *%kkkx CAMERA CHECK ***%*\n\n'");
grab(0);

prtc();

stopgrab(1);

nf = sx = sy = 0;

fx = fy = 511;

break;

G R
...... .

- .
N Ve e

BT PR
RO YRS

- . a.m a

".
[}

case 7:
initialize();

nf = sx = sy = 0;

fx - fy = 511; /*********************************:****************/

sclear(100); /* using 100 gives a clean screen that is not too */
break; /* dark to tell whether the monitor is on/off *x/
default: /* This is to prevent accidently leaving it on. */
break; /**/
1}
}
/***/
menu3() /* 402 */
{

char temp[10},ch[2]},t3[30};
int version,j;
for (5;) {

cls();

printf("\n kkkkk DEMONSTRATION ****%\n");
printf(”\n O:RETURN TO MAIN MENU\n");
printf("\n 1:IDENTIFY A PERSON");
printf("\n 2:TOTAL SYSTEM\n\n\n\n\n\n\n>");

scanf("%d",&option);
switch (option) ({
case 0O:
return;
case 1:
display(ilist,k,5);
printf("\n\n **xkxx TDENTIFY A PERSON *x%%xx'").
printf("\n\n Enter person’s name. >");
scanf("%s", temp);
printf("\n\n Enter version number. >");
scanf("%s",ch);
printf("\n");
test = -1;
for (j=1; j<(k+1); j++) {
if (strcemp(ilist[j].name,temp) == 0) {
if (ilist[j).pum == (chf0]} - '0")) {
t3[0] = '\O’;
strcat(t3,"|face.dbase]\0");
strcat(t3,ilist{j].name);
strcat(t3,".img;\0");
strcat(t3,ch);

test = j;
j =k + 2; w
11}
if (test == -1) printf("\n\n Image file not found.");
else {
nf = sx = sy = 0;
fx = fy = 511;

sclear(0,1);

readim(200, 30,200,200,t3,"nocomm");
text(200,10,0,1,200, temp);
recognize(test);

)

break;

B-20
PN NN ’ _‘.;",.. ---- ':.. .‘;... K ._:...: L) ..‘
. SR S L T P PP PO T U TN P . P L TS T O W O R A I A

case 2:
afrm();
L break;
. default: .
break;
}}
}

/***/
prtc()

printf("\n\n Press RETURN to continue. >");
getchar();

getchar();

return;

}

/e e de de Kk sk ke ok ke ke vk ke sk ok e ok ok ok sk vk sk gk ok vk sk sk ke ok sk ok ok gk ok sk vk ok ok ok sk 3k ok ok vk ok ok ok ok ke ok vk ok gk ok vk ok ok ok ok e ke ke ok ok ke ok /

cls()

{
printf("\n");
return;

¢ }

T Jhhkkkkhkkhkhkkhkkkhkhkkhkkkhkhkhkhkhkhkkkhkkhkkkhkhkhhkkhkktrhkhkkkhkkhkkkkhkhkkkkkkhhkkkhhhkkkik/

static int pix,avg,diff,neigh, threshold,ne,nn,nm;
static int col[512]);
struct image({
int data[512];
}s

struct feat{
int sx,sy,fx,fy,xcenter,ycenter,pix,xsize,ysize,used;
}i

struct whole{
int x,y,dx,dy,leye,reye, teye,beye, tnose,cmouth;
int center,xellipse,yellipse,radius;
}s
static struct image pic{512],norm[512],temp[512};
static struct feat eye[100]},nose{100},mouth[100];
static struct whole face]l0};

s s F s

= a8 &

L)

-
-
A"

.

+ N
N

JhRhhkkkkkkkkkkkkhkhkkkkhkhk kA khkk kA khkhkkkkkkkhkhkkkkkhhkhhkhhkkkhkhkhkhkkhkkhkhkhk /
int facemap()

;J‘\'f {
J"‘\J int i9j9k»1; .
char name([30];
del();
cls();

printf("\n processing image...");
bright norm();
ne = nn = nm = nf = 0;
featuremap();
for (i=1; i<ne; i++) {
if (eyef{i].used == 0) {
for (j=1; j<ne+1; j++) { /* look for a matching eye */
if (eye{j).sx > eye[i].fx && eye[j].used == 0) { /* try eye[j] */
if (abs(eyelj).pix - eyeli).pix) < eyelj).pix/2) {/* pix nums okay */
if (eyelj].ycenter > eye[i].sy &&

eye(j).ycenter < eyel|i].fy) { /* close in height */
if (eyelj]l.sx < eye[i].fx+2%eye[i].xsize) { /* near enough */
for (k=1; k<nn+1l; k++) { /* look for a nose */

if (noselk]}.sy > eyeli].fy && nose[k].used == 0) {/* try nose[k] */
if (noselk].xcenter > eye[i].sx &&

nose[k].xcenter < eye[j].fx) { /* between eyes */
for (1=1; 1<nm+1; 1l+4) { /* look for a mouth */
if (mouth[l}.ycenter > noselk].fy &&

mouth[i].used == 0) { /* below nose */

if (mouth[l].ycenter < eyeli].fy+4*eye[i].ysize) { /* near*/
if (mouth[l].xcenter > eye[i].sx && /* enough */
mouth[1l].xcenter < eye[j].fx) { /* between eyes */

i. nt = nf+l; /* all features found and cond met for a face. */

eye(i].used = eye[j].used = 1;
nose[k].used = mouth[1l]}.used = 1;
face[nf].dx = 9*(eye[j].xcenter - eye[i].xcenter)/4;
face[nf].dy 2*(mouth|1l]}.ycenter - eye|i].sy);
face[nf].x = (eye[j].xcenter+eyeli}.xcenter)/2 -
face|nf].dx/2;
face[nf}.y = mouth[l].ycenter - 4*face[nf].dy/5;
face[nf).leye = eye[i].sx - face[nf].x;
face|[nf].reye = eye[j].fx - face[nf].x;
face[nf]. teye (eye|[i).sy + eye[j).sy)/2 - face[nf].y;
face[nf].beye = (eyel|i)l.fy + eyel|j]l.fy)/2 - face[nf].y;
face[nf].tnose - nose|k].sy - face[nf].y;
face[nf].cmouth - mouth(l].vcenter - face|nf].y;
face(nf].center = face(nf].dx/2;
face{nf].xellipse = face|nf].dx/2 + face[nf].x;
face|nf].yellipse - face|nf}.dy/2 + face|nf].y;
tface|nf).radius - face|nf).dx;
circle(face|nf}.xellipse,face|nt}.yellipse,
face[nf].radius.1,2,255);
rectangle(eye|i].sx,eyeli].sy,eye[j].fx - eye|i].sx,
mouth[l].ycenter - eye[i].sy,255);
1 =k - j§ = 500;
IRRRERRRRERERE

Hon

o on o on

N N N T e o R o IR
\"&\I\ \d_'- T e T e R e S WL W TN ' v

Plal 3P N

6§

o

. WY L . N Sl . Y ‘t " W o Al

if (nf == 0) return(0);

printf("\n Saving brightness normalized faces to disk...");

for (y=0; y<480; y++) whline(0,y,512,norm[y].data);

name[0] = ’\0’; .

strcat(name, "bnorm.img\0");

for (i=1; i<nf+l; i++) {
printf("\n %sXsXd",name,";",i);
circle(face{i].xellipse,face[i].yellipse,face|i].radius,1,2,255);
rectangle(face[i].x,face[i]}.y,face[i].dx,face[i].dy,255);
fill(face[i].x+1,face[i].y+1,255,255);
fill(face[i]).x+face[i].dx-1,face[i].y+face[i].dy-1,255,255);
fill(face[i].x+1,face[i].y+face[i].dy-1,255,255);
fill(face[i].x+face[i].dx-1,face[i].y+1,255,255);
saveim(face[i].x,face[i].y,face[i].dx,tace{i].dy,0,name, "nocomm");
}

printf("\n Also saving original faces...");

for (y=0; y<480; y++) whline(0,y,512,temp[y].data);

name{0] = "\0’;

strcat(name,"orig.img\0");

for (i=1; i<nf+1; i++) {
printf("\n %s¥%s%d",name,";",i);
rectangle(face(i].x,face[i].y,face[i}.dx,face[i].dy,255);
saveim(face[i].x,face[i].y,face[i].dx,face{i].dy,0,name,"nocomm");

return(l);

}

e
o
;. JRARRRIRRRA AR AR R R AR R ARk AR * AR AR AR AR AR R AR AR A bRk kA ke kkkkkdkkk /
S featuremap()
N int fill,test,ymin,ymax,xmax,i,j,dy,dx,ytest,xtest,br;
char type;
" for (y=sy+lé4; y<fy-14; y++) | /* begin and end with 14 pixel margins */
] test = O;
:: for (x=sx; x<fx-14; x++) { /* see if line is touching top of object */
» if (picly+1]).datafx] == 0) { /* these checks are done like this */
o if (pic|y]).data[x] == 100) { /* for speed. */
if (picly).data[x-1}+pic|y].data[x+1] == 200) {
oo if (picly]).data[x-2]+picl{y].data[x+2] == 200) {
N, if (pic[y].data[x-3]+pic[y].datafx+3] == 200) {
o if (pic[y].data[x-4]+picly].data]x+4] == 200) {
t» if (pic[y).data[x-5]+pic[y].data[x+5] == 200) {
X test = 1;
bx = x - 50;
if (bx < 14) bx = 14;
- X = 512;
; 11111))
:4 if (test == 1) { /* okay, for this line find the object(s) */
P ¢ for (x=bx; x<498; x++) {
2 test = 0;
2 type = ‘u’;
s if (pic[y]).data[x] == 100) { /* possible corner */
o ymax = y + 40;
o if (ymax>479) ymax = 479;
- for (i=y; i<ymax+1; i++) { /* how far is line white? */
- if (p1c[1] data[x] == 0) {
N (® ymax = i - 1;
J: - i = 512;
" }}
~ if (ymax > y+1) {
:. for (i=y+1; i<ymax; i++) ¢
o~ if (picli].data[x+1] == 0) { /* something touching line */
: dy = i;
" test = 1;
j i = 512
’ 111}
5 if (test == 1) { /* left side ok */
xmax = x + 50;
if (xmax>498) xmax = 498;
for (i=x; i<xmax+1l; i++) { /* how far is line white? */
: if (picly].datali]) == 0) {
‘ﬁ xmax = i-1;
i = 512
3 1)
test = 0;
>, if (xmax > x+1) {
- for (i=x+1; i<xmax; 1+*) {
" if (p1c[y+1] data[i] == 0) { /* something touching line */
- dx = i;
N test = 1;
- i-= 512;
11
S
~ B-24
-

Rt _.~. ’, J,-ﬁf

‘-“-\‘-

...... L U LU SR S N IR
TN LN e R A O AN
»

- ; .
r ‘#tn;”’

Tas TS

Ry

,,4
n
AR AL PO,

. L=

&,

-

SEWY

- l‘l‘

LAy

if (test == 1) { /* at the border of unknown object */
N test = 0;
ﬁh; vhile (dx < xmax+1 && dy < ymax+l && test == 0) {
s ytest = O; B
vhile (dy < ymax+1l && ytest == 0) { /* try to go across to dx */
ytest = 1; /* assume success */

for (i=x; i<dx+1l; i++)
if (pic|{dy].data[i] == 0) ytest = O;
if (ytest == 0) dy = dy + 1;

}
if (ytest == 1) {

Xtest = 0;
vhile (dx<xmax+1l && xtest == 0) { /* try to go down to dy */
Xtest = 1; /* assume success */
for (i=y; iddy+1l; i++)
if (picli].data[dx] == 0) xtest = 0; /* failed */
if (xtest == 0) dx = dx + 1;
}
if (xtest == 1) { /* recheck present dy */
for (i=x; id<dx+1; i++)
if (picldy].data[i] == 0) ytest = O; /* failed */
if (xtest == 1 && ytest == 1) test = 1;
1Y
if (test == 1) { /* successfully blocked in object */
if ((dy-y) > 3*(dx-x)) type = 't’'; /* too tall and thin */
if ((dx-x) < 7) type = 't’; /* too small */
}
if (test == 1 && type == ’u’) {
fill = O;
(@ for (j=y+1; j<dy; j++)
e for (i=x+1; i<dx; i++) if (picfj].datafi] == 0) fill++;
if (£fill < (dx-x)*(dy-y)*3/10) test = O; /* less than 30% solid */
)
if (test == 1 && type == ‘u’) {
if (dx-x > 2*(dy-y)) { /* possible mouth */
rectangle(x,y,dx-x,dy-y,0);
type = ‘m’;
nm = nm + 1;
mouth[nm].xcenter = (dx+x)/2;
mouth[nm].ycenter = (dy+y)/2;
mouth[nm].sy = y;
mouth[nm}.used = 0;
})
B-25

Yl

Y
',; 1
| if (test == 1 && type != "t’) {

. fill = 0;
N SR ymax = dy+(2*(dy-y)/3);

NIy if (ymax < 480) (]

- for (j=dy+1; j<ymax; j++) /* chk for space below */
a for (i=x; iddx; i++) if (pic[j].datali] == 0) fill++;

:ﬁ if (£ill<(ymax-dy+1)*{(dx-x)*10/100) { /* less than 10% of area filled */
~5 type = 'e’;

Ny ne = ne + 1;
\ eye[ne).xcenter = (dx+x)/2;

eye[ne].ycenter = (dy+y)/2;

" eye[ne].pix = (dx-x) * (dy-y);
r.- eye[ne).xsize = dx - X;
\21 eye[ne].ysize = dy - y;

“j eye[ne].sx = x;
% eye[ne]).fx = dx;

eye[ne].sy = y;

5 eye[ne].fy = dy;

. eye[ne].used = 0;
e rectangle(x,y,dx-x,dy-y,0); /* (1x]1 <= size <= 20x20) */
i })

- fill = O;

2 ymin = y-(dy-y);

4 if (ymin > 0) {

- for (j=ymin; j<y; j++) /* chk for space above */
O for (i=x; iddx; i++) if (piclj]).data[i]) == 0) fill++;
fjﬁ if (£ill < (y-ymin)*(dx-x)*10/100) { /* less than 10% of area filled */
N nn = nn + 1;
i nose[nn].xcenter = (dx+x)/2;

[, nose{nn]. y51ze =dy - y;

o nose[nn].fy = dy;

I~ nose[nn]. sy =y;

oy nose[{nn}.pix = (dx-x) * (dy-y);

‘o nose[nn)].used = 0;

> rectangle(x,y,dx-x,dy-y,0); /* (1x1 <= size <= 20x20) */

’ I
o return;

e }

e
-,

=~
2
-‘_;

v
L.
P

-,

Fd

A .

v

e B-26
. ¢

N
~
L e o TN N A N o Tt ol SRS Lt e e

G s%n 2t AV et a Al At B A A % A A% A A At A Al Rta 8% dte dVa A0a 8'a 4! W 4 ; Y Fy Q - Y

[hkhkhkkkhkkkhkhkhkkhkhkkAkhkkkhkhkhhkhkkkkkhkkkhkkkkhkhkkkhhkhkkhkhhkkhkhkkkhkhkkkhkhkkkkkhk /

) bright_norm() /* norm will contain brightness normalized scene */
NS ¥ { /* (bright areas set to 128, dark areas= 128-diff*/
el int i,j; /* pic will contain the dark objectr of the scene */

/* (uses variable threshold, binary output) */

\ SX = sx - 14;
K if (sx < 0) sx

= 03
f sy = sy - 14;
‘ if (sy < 0) sy = 0;
| fx = fx + 14;

if (fx > 512) fx = 512;
] fy = fy + 14;
o if (fy > 480) fy = 480;

| for (y=0; y<4BO; y++) for (x=0; x<512; x++) norm|y].data[x] =
A for (y=0; y<480; y++) rhline(0,y,512,pic[y].data);
~

y = sy;

for (i=sx; i<fx; i++) {

coll[i] = O; /* setup all columns for first y value */
- for (j=y; j<y+30; j++) col[i] += pic[j].datali];
. }
y for (y=sy+1l; y<fy-30; y++) { /* now all columns calculated faster */
! for (i=sx; i<fx; i++) col[i] += (pic[y+29].data[i] - pic[y-1].datafi]);

X = SX;

neigh = 0; /* setup first neighborhood */

for (i=x; i<x+30; i++) neigh += col[i];

for (x=sx+1; x<fx-30; x++) {/* now all other neigh are calculated faster */
neigh += (co0l(x+29] - col[x-1]);

avg = neigh/900;

pix picly+14].data[x+14];

Dya e

- - if (pix < avg) norm(y+14]).data{x+14] = 128 - (avg - pix);
) else norm{y+1l4}.data[x+14] = 128;
: if (norm[y+14}.data[x+14] < 0) norm{y+14].data[x+14]) = O;
Cd
hy threshold = 80*avg/100 + 7; /* add 7 because noise is +/- 7 */
if (pix < threshold) temp[y+14].datafx+14} = O; /* dark=0 */
else temp|y+l4}).data[x+14] = 100; /* else light=100 */
)}
for (y=sy+14; y<fy-1l4; y++) { /* cleanup noise */
» for (x=sx+14; x<fx-14; x++) {
.. pic[y].data[x] = temp[y].data[x];
if (tempfy].datafx] == 0) {
= if (temply].data|x-1])+temp[y].data[x+1]+temp[y].data[x+2] > 0) {
N picly].data[x] = 100;
~ 11}}
: for (y=sy+1l4; y<fy-14; y++) {
. for (x=sx+14; x<fx-14; x++) {
> if (picly].datajx] == 0) {
if (picl[y}.datalx-1])+pic[y-1].data|x]}+pic|[y+1].data[x]+
. picfy).data[x+1] > 200) {
N picly]).data[x] = 100;
; 1))
" “»
S |

B-27

------------- SRSEARORS N AN T T T e e N T T T T
\'J‘J‘J'-r-l‘rlf-f':.r“f\.r-‘f"""\J*-F ST RIS R _\, v ~ - R)

Pl A)

-
.--
>
,-
".-
-..
AL

,-n-n"
o

it kD

e

-
4

. LA /‘-'\n

>

P

"

for (x=fx-14; x>sx+1l4; x--) {
if (pic{y].data[x] == 0) {
if (pic(y).data[x-1])+pic[y-1}.data[x]j+pic[y+1].data[x]+
pic[y].data[x+1] > 200) ¢ -
picjy].datafx]) = 100;
11}}
for (y=0; y<480; y++) rhline(0,y,512,tempfy].data);
for (y=0; y<480; y++) whline(0,y,512,pic|[y].data);
return;

}

[hdkkkhkkhkkhkhkkkhkkkhkhkhkkkhkkhkkhkhkkhkkkkhkhkkhkkkhkkkkkkhkkhkkhkkkhkkkkhhkkkkkkkkkkk /

int getint(fp) /* used by readfile() to read in the gestalt */
FILE *fp; /* values that are stored in the DAT files. They */
{ /* are stored in columns of 5 characters. (see */
int i,number; /* sample printout of .DAT file). */
char c; Jhkkkk Rk Rk kKR kkk Kk kdkkk ok ke ok dedek ko kkkkkkkhkkk Kk kdkk /

number = 0;

for (i=0; 1<5; i++) {

¢ = gete(fp);

if (¢ '= ’ ') number = (number * 10) + (c - '0');
}

return(number);

}

S hhkdkhkhkhkhkhhkhkhkhkhkkhkdkhkkkhkhkhkkhkhkhkkkhkhkkhkhhkkkhkhkhkhkhkhhkhkhkkhhkhkhkhkhkhkhkhkkkkkhkhkkdkhkkkkhkkkkk /
copyfile(src,dest)
char src|]),dest][]; /* copies Itex image files. */

char t9[100];

t3{0] = '\0’;
strcat(t9,"copy \0");
strcat(t9,src);
strcat(t9,”" \0");
strcat(t9,dest);
printf("\n X%s",t9);
system(t9);

return;

}

.

Y WA T P .
PP AT TRV P

L

[hkkkhkkhkhkhkkkhhkhkhkhhkhhkkkhhkhkkhhkhkhkkkhkkhkhkkhkkkhkkkhhkkkkhkkkkhhkkhkhkkkhkhkkkkkkkkk /

int readfile(name,str) /* used to read in the DAT files upon main menu */

char name[]; /* selection = 2 (care & feeding of database). */
struct list str[]; [Rhdkkkkkkhkkkhkhkkhkhkkhkhkkhkkhkkhkhkhghhkhhkkhkhkhkkkhkhkhkkkk /

FILE *fp,*fopen();
int i,j,c;
fp = fopen(name,"r");
i-= 0;
vhile ((c = getc(fp)) != '*') { /* the star denotes the EOF */
i=1+1;
str[i].name{0] = c;
for (j=1; j<10; j++) {
c = getc(fp);
if (¢ !'= ' ') str{i].name[j] = ¢;
}
str[i].name[j+1] = '\O’;
str[i].num = getint(fp);

str[i].winlx = getint(fp);
str[i].winly = getint(fp);
str[i].win2x = getint(fp);
str{i].win2y = getint(fp);
str[i].win3x = getint(fp);
str[i].win3y = getint(fp);
str[i].win4x = getint(fp);
str[i].win4dy = getint(fp);
strfi}.win5x = getint(fp);
str[i].winb5y = getint(fp);
strfij.winéx = getint(fp);
str(i}.winby = getint(fp);
c = getc(fp); /* read newline character */
}
fclose(fp);
return(i);
} /* Bl4 */
[l kkddkkkhkhhhkhkdkdkdkkhkkkkhkkhkhkhkkkkkkkhkdhkhkhhkhhkkhhkhkhkkhhkhkhkAhkkkhhdkkkkkhkkhkkhkhkhkkhkkhkhkx/
writefile(name,str,i) /* used to write updated DAT files to disk when * /
char name|]; /* user is done modifying the database and selects */
struct list str[]; /* menu option = 0 (Return to main menu). * /
int i; [hdkokkhkkkhkkkhkkhkokhkhkdkdkhkhkhkhkhkhkhkhhkhkhkkhkhdkhkkhkkhkkhkhkkhkkkhkkk /
{
FILE *fp,*topen();
int j;

delete(name);

fp = fopen(name,"w");

for (j=1; j<(is+1); j++) {
fprintf{fp, "%-10sX%5d", str[j}].name, str[j].num);
fprintf(fp, "%5d%5d", str|j}.winlx, str[j]).winly);
fprintf(fp, "%5d%5d", str[j].win2x, str[j].win2y);
fprintf(fp, "X%5d%5d", str[j).win3dx, str[j]).win3y);

fprintf(fp, "%5d%5d", str[j].winé4x, str{j].windy);

fprintf(fp, "%5d%5d", str[j].win5x, str[j].win5y);

R fprintf(fp, "%5d%5d%s", str[j].winbx, str[j].win6y, "\n");
} .

fprintf(fp, "*");
fclose(fp);
return;

[Rkdkhhdkkddkhkkhkhkkhkkkkhk kA kkkkkkkkkhkkkkhkkkhkkkkhkkhkhkhkkhkkhkkkhkkhkdkhkkhkkkkkk /

display(str,k,m) /* m = 5 or 8 depending on # columns desired */
struct list str{]); /* m = 5 for ilist displays, 8 for tlist displays */
int k,m; /* 1 = present column being printed on screen */
{ /* j counts by 1 or 4 depending on value of m */
int j,1; /* this is due to format of tlist file; there are */
1 =20; /* sets of 4 lines all with the same name and the */
if (m == 5) { /* name only needs to be printed once. */
printf("\n\n The AFRM has the following .IMG files:\n");

printf(" —-m - \n");

}

else {

printf(" The AFRM is trained on the following subjects:\n");
printf(" - \n");

for (j=1; j<(k+1); j=j+(m-4)) {
1 =1+ 1;

if (1 == m) {

1:1;

printf("\n");

“ if (m == 5) printf("%11s¥%s%d",str|[j].name, ".img;", str[j].num);
bhd else printf("%11s",str{j].name);
)
return;
}

/ Fe e ok ok ke gk ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ek ok ok ok ko /
static double cray[129][129],rinp[129]};

static double jr3d3,ir3d3; /* scaled gestalt values returned from cortranlé */
static int ix,iy; /* window sizes used by cortranlé */

.
»
>
{

[4
LN A

PR

a:/}#l{

2" 0.2

L BN S I B A

.Nl'ls "

MY

e s> rd

~
~ Y a

. \i'

L

VAZE 2 222822822 2222 s s s s s 3 23222 s s ssisss s s sissssasesssslds v

gestalt(m) /* Values range from 0O to 128 */

int m; /* m = face number */

{ -
int x,y;

line(256,0,256,512,0);
line(0,256,512,256,0);
line(384,0,384,512,0);
line(128,256,128,512,0);
/* left half: whole head */
carea(sx,sy,face[m].dx/2,face[m].dy,270,sy,face[m].dx/2,face{m]}.dy);
/* right half: whole head */
carea(sx+face[m}.dx/2,sy,face[m].dx/2,face[m].dy,
400,sy,face[m).dx/2,face[m].dy);
/* top half: top to tnose */
carea(sx,sy,face|m].dx, face|m].tnose,15,sy+256,face|{m].dx, face[m]. tnose);
/* internal features */
carea(sx+facel[m}.leye,sy+face|m]. teye,face|[m).reye-facelm].leye,
face[m].cmouth-face[m]. teye,
140+face[m].leye,sy+256+face|{m].teye,face|m).reye-face[m}.leye,
face[{m].cmouth-face(m].teye);
/* left internal features */
carea(sx+face[m}.leye,sy+face[m].teye,face[m].center-face[m]. leye,
face[m).cmouth-face|m]. teye,
270+face[m].leye,sy+256+face[m}. teye, face[m].center-face[m].leye,
face[{m}.cmouth-face[m].teye);
/* bottom half: tnose to chin */
carea(sx,sy+face[m].tnose,face[m).dx,face[m]).dy-face[m]. tnose,
400,sy+256+face[m]. tnose,face|m]).dx,face|m].dy-face[m].tnose);

line(sx,sy,sx+face[m].dx,sy,0); /*top*/
line(sx+face[m].dx,sy,sx+face[m].dx,sy+face[m].dy,0); /*right*/
line(sx+face|[m].dx,sy+face[m].dy,sx,sy+face|m].dy,0); /*bottom*/
line(sx,sy+face[m].dy,sx,sy,0); /*left*/
line(sx,sy+face[m}.teye,sx+face[m].dx,sy+face{m]}.teye,0); /*teyex/
line(sx,sy+face|m].cmouth,sx+face[m].dx,sy+face[m].cmouth,0); /*cmouth*/
line(sx,sy+face[m].tnose,sx+face[m].dx,sy+face[m]. tnose,0); /*tnose*/
line(sx+face[m].leye,sy,sx+face|m].leye,sy+face[m].dy,0); /*1leyex/
line(sx+face|m].center,sy,sx+face[m].center,sy+face[m].dy,0); /*center*/
line(sx+face[m].reye,sy,sx+face[m]|.reye,sy+face[m].dy,0); /*reye*/

ix = face[m}.dx/2;
iy = face[m].dy/2;
printf("\n calculating gestalt for window 1.");
clear _cray(); /* left half: whole head */
for (y=sy; y<sy+face|m].dy; y+=2)
for (x=270; x<270+face[m].dx/2; x+=2)
cray{1+(x-269)/2][1+(y-29)/2) = (double) 255 - brpixel(x,y);
cortranlé();
ilist]O}.winlx = (int) jr3d3;
ilist[0].winly = (int) ir3d3;
printf(” winlx=%d winly=%d",ilict[0O].winlx,ilist[0}.winly);

AARAARAN |0

L

Ll S . - .
PR S e

printf("\n calculating gestalt for window 2.");
clear_cray(); /* right half: whole head */
for (y=sy; y<sy+face[m].dy; y+=2)
for (x=400; x<400+face[m).dx/2; x+=2) ’
cray[1+(x-399)/2+face[mj.dx/4])(1+(y-29)/2] = (double) 255 - brpixel(x,y);
cortranlé();
ilist[0}.win2x = (int) jr3d3;
ilist{0}.win2y = (int) ir3d3;
printf(" win2x=%d win2y=%d",ilist[0].win2x,ilist[0}.win2y);
printf("\n calculating gestalt for window 3.");
clear_cray(); /* top half: top to tnose */
for (y=sy+256; y<sy+256+face|m].tnose; y+=2)
for (x=15; x<15+face[m].dx; x+=2)
cray[1+(x-14)/2][1+(y-285)/2] = (double) 255 - brpixel(x,y);
cortranlé();
ilist{0]).win3x = (int) jr3d3;
ilist[0].win3y = (int) ir3d3;
printf(" win3x=%d win3y=%d",ilist{0].win3x,ilist[0}.win3y);
printf("\n calculating gestalt for window 4.");
clear cray(); /* internal features */
for (y=sy+256; y<sy+256+face[m].cmouth; y+=2)
for (x=140; x<140+face|m].reye; x+=2)
cray[1+(x-139)/2][1+(y-285)/2] = (double) 255 - brpixel(x,y);
cortranlé();
ilist[0]).win4x = (int) jr3d3;
ilist[O].windy = (int) ir3d3;
printf(" windx=%d windy=%d",ilist{0]).winé4x,ilist[0].wind4y);
printf("\n calculating gestalt for window 5.");
clear cray(); /* left internal features */
for (y=sy+256; y<sy+256+face{m]}.cmouth; y+«=2)
for (x=270; x<270+face[m].dx/2; x+=2)
cray[1+(x-269)/2]{1+(y-285)/2] = (double) 255 - brpixel(x,y);
cortranlé();
ilist[0]).windx = (int) jr3d3;
ilist{0].winb5y = (int) ir3d3;
printf(" wind5x=%d winS5y=%d",ilist{0].win5x,ilist[0].wind5y);
printf("\n calculating gestalt for window 6.");
clear cray(); /* bottom half: tnose to chin */
for (y=sy+256; y<sy+256+face[m].dy; y+=2)
for (x=400; x<400+face[m].dx; x+=2)
cray[1+(x-399)/2]{1+(y-285)/2] = (double) 255 - brpixel(x,y);
cortranlé();
ilist[0].winéx = (int) jr3d3;
ilist[0}.winby = (int) ir3d3;
printf(" winébx=%d winéy=%d",ilist[{0].winéx,ilist{0}.win6y);
return;

}

YRR Y

/***/
cont_enhance(m)
S0 int m; /* face number */

{
int %x,y,2;
static luts();
setlut(RED,5);
histeq(RED,5,face[m].leye+sx+1,face[m].beye+sy,
face[m].dx/2 - 2,face[m].cmouth-face[m].beye);
maplut(RED,5,0,0,256,256);
linlut(RED,5);
linlut(GREEN, 5);
linlut(BLUE,S);
for (y=sy; y<sy+face[m].dy; y++) { /* threshold result */
for (x=sx; x<sx+face[m].dx; x++) {
z = brpixel(x,y); /* leave dark areas but */
if (z < 50) bwpixel(x,y,z); /* make skin pure white */
else bwpixel(x,y,255);

‘'rs SRAARAREs S PPl R e g s s

3}

return;

}

/**/

A AT RN A

scale(m)
int m;
{
int fact;

if ((£x-sx)/150 > (fy-sy)/150) fact = 150/(fx-sx);
else fact = 150/(fy-sy);
if (fact > 1) {
repzoom(sx,sy, fx-sx, fy-sy, sx, sy, 200,200, fact, fact);
face[m].dx = face[m].dx * fact; /* update face[m].lines by ’'fact’ */
face[m].dy = face[m].dy * fact;
face[m].leye face[m].leye * fact;
face[m].reye = face[m].reye * fact;
face[m]. teye face[m].teye * fact;
face[m].beye = face[m].beye * fact;
face[m].tnose = face[m].tnose * fact;
face[m].cmouth = face[m].cmouth * fact;
face[m).center - face[m]j.center * fact;
fx = (fx-sx)*fact + sx; /* update fx,fy by 'fact’ */
= (fy-sy)*fact + sy;

- Al o . Sl vy [T 4 ath -alar - gae *
e A 8'e Ata B¢, L AR o ban tal cal Tl ‘el ¥ s A v (CAatiat

aclear(0,0,512,sy,255);

aclear(0,fy,512,480-fy,255); .
N aclear(0,sy-1,sx,fy-sy+1,255); N
N aclear(fx,sy-1,512-fx,fy-sy+1,255); :
return;

}

Jdddkkdk ko kdekhdkddk ok ek ke ko d ok k kA kR Ak ok ko ok ek Ak ko k ke ke ke ke ke ke ok ko /

int isolate(thresh,mode,size) /* works on top half of screen only! */ -
int thresh; /* threshold for detection of target */
int mode; /* 6 bit or 8 bit image */

int size; /* determines minimum size of target and affects speed. */
{ /* size is either 16 or 32 pixels. */
int x,y,2;
sX = sy = fx = fy = -1; /* Find top. Kddkdokkddkdkdek ko dkkkkkkkkkkkkddkkkkk /
for (y=size-1; y <= 255; y=y+size){ /* This subroutine finds location */ A
for (x = 0; x < 511; x=x+size)({ /* of a moving object. If there is*/ :
z = brpixel(x,y); /* no moving object, or it is too */ ,
if (mode == 6) z = z & 63; /* small then (0) is returned. If */
if (z >= thresh) { /* an object is found then sx,sy, */ =3
sy = y-(size-1); /* fx,fy are set and (1) is re- */ o
x = 512; /* turned. This is done so that */ X
y = 512; /* all future work done on a scene*/ -
11} /* is done on a greatly reduced */ A
if (sy == -1) return(0); /* area of the scene and hence is */ .
.: for (y=256-size; y>(sy+size-1); y=y-size){/* done faster. Thresh is set to*/ »
e for (x = 0; x <= 511; x=x+size){ /* high enough value to eliminate */ N
z = brpixel(x,y); /* video noise but low enough to */
if (mode == 6) z = z & 63; /* find small brightness differen-*/ N
if (z >= thresh){ /* ces that may occur between a */ J
fy = y + size-1; /* Find bottom. * moving object and its bkgnd. */ .
X = 512; J F ok ok ok ok ok ok ok ok ko ok ko ke ke ek ek k ok ke k >
y = -1 i
11} 2
if (fy < (sy + size)) return(0); K
for (x=size-1; x <= 511; x=x+size){ /* find left side */ S

for (y = 0; y < 255; y=y+size)({ i
z = brpixel(x,y);
if (mode == 6) z = z & 63;
if (z >= thresh){
SX = X - (size-1);
X =y = 512;
}1)

if (sx == -1) return(0);

for (x = 512-size; x > (sx + size-1); x = x - size){
for (y = 0; y < 255; y =y + size){

z = brpixel(x,y);

if (mode == 6) z = z & 63;

if (z >= thresh){
fx = x + size-1;
X -1;
y = 512;
11}

if (fx < (sx + size)) return(0);

return(l);

}

/* find right side */

[hkkkhkhkkhhkkhkhkkhkhkkhkhkkkhhhkhkkhkhkhhkhkkhkhkkhkhkhkhkhkhkhkhkhhkhkhhhhhhhkhhkhkkhkkkhkkhkhkhkhkkkkkkkk/

#define A0 (short int)a0(i)
#define a0(i) (i & Ox003f)
#define Al (short int)al(i)
$define al(i) ((i & O0x0£fc0) >> 6)
#define DO(i) { data &= OxffcO; data |= (i & Ox003f);)}

/* These are the transformations used in the
/* feedback lut for the real time subtraction
/* demo. This software was created by using
/* the toolbox program (see FG-100 user’s
/* manual chapt 7)

*/
*/
*/
*/
*x/

#define DI1(i) { data &= Oxf03f; data |= ((i << 6) & Ox0fcQ); } /*xkkkkkkkkkkkkk/

#define INPUT 0x6000

#define abs(i) (((i) <€ 0) ? (-(i)) :

xforml(addr, initial)
unsigned addr,initial;

{

register unsigned short i

register short int data
D1(Al);

DO(abs(Al - A0));
return((unsigned)data);

}

xform2(addr, initial)
unsigned addr,initial;
{

register unsigned short
register short int data

D1(AQ);

DO(abs(Al - AD));
return((unsigned)data);

}

v '.r\‘.\{~f\f' f\f..f.\f.‘-f._-f

o

PR _‘ ,“-“,.-‘..-_. ‘e -_..-i'
A L e R N U T A G

JRRREIKKKAK KKKk Kk dddekh ok dkokddddkkkkhdkdkkkdkkkkkkkdkkkhkkkkkkkkkhkdkkk Ak kkkkkk /
afrm() /* A completely Autonomous Face Recognition Machine (AFRM) */

sk, {
ﬁ;} int cam; <
char t2[{30},t3[30],stop,answer[1];
register unsigned j;
stop = 'n’;
printf("\n Select camera port (0,1 or 2) >");
scanf("Xd",&cam); ’
vhile (stop == 'n’) {

cls();

printf(" please wait...");

rtsubtract(0);

setcamera(cam);

setlut(0,0);

setinmux(6);

for (j=0; j<0x1000; j++) write lut(INPUT,j,xform2(j,read lut(INPUT,j)));
cls();

printf(" looking for target.");

snap(1);

snap(1);

vhile((isolate(8,6,32)) !'= 1) snap(l);

printf("\n found target, acquiring 8 bit image.");
initialize();

setcamera(cam);

wvaitvb();

snap(1);
nf = sx = sy = 0;
fx = 511;
‘~ fy = 255; /* presently isolate() only looks for target in top */
B if (facemap() == 1) { /* half so look for faces in top half */

printf("\n found ");

printf("%d",nf);

if (nf == 1) printf(" face.");

else printf(" faces.");

facerec(2);

}
printf(”\n Do you wish to stop? (Y/N) >");
scanf("%s",ansver);

if (answver[0] == 'Y’ || answer|0] == 'y’) stop = 'y’;
)
return;
}
B-36

PN . ME DR I R YR LR R R T e e e e e T e e e e e e e e e, P A A
e e e o L S 0 e e e e T

|
U

d

d

d ..
")
- et
i
0
B

.

-

L]
i Ll

1
0
L
¢

."-".;-’

-f-:.rl._f;(:.)r:a}clf:xfkixfx.

/e e de ok Ao e e ek gk ok ok ok ok ok ok ook o e e e e ek e e ok ok ke ok ok ke ke ke ke ko e ok ok ek ek ke ke ok ok ok /
rtransa() /* modified from RTRANSA.FR written 06/27/85 by R. RUSSEL */

int S,J3 -
double arg;

for (s=1; s<256; s++) {

j = s - 128;

arg = ((double)j*j)/(-6000.0);

gauss[j+128] = exp(arg);

return;

}

7 Fe e e e e sk ok o ke ok ok ok ok ok ok ok ok ok ek ok ok ok ok ke ok ek ok ke o e ok ek ok ok ok ke ek ek Aok e ok ok /
rtransb() /* modified from RTRANSB.FR written 06/28/85 by R. RUSSEL */
{ /* multiplys rinp by gaussian and puts in output */
int i,j;
double output{l129];
for (i=1; i<129; i++) {
outputfi] = O;
for (j=1; j<129; j++) output[i] = output[i] + rinp[j]*gauss|j-i+128];
}
for (i=1; i<129; i++) rinp[i] = output[i];
return;

]

/e Je Je Je Fe vk k ek K d vk ke sk e e e ke ke sk ok e sk sk ke sk ok ke S ke ok ok ok o ok ok e ok ok gk ek sk ok ok sk ok sk vk ok ok ok ok gk sk ok ok ok ok e ok sk ke ok ke ke ke ke ok /
clear_cray()

(

int x,y;
for (y=1; y<129; y++) for (x=1; x<129; x++) cray(x]{y] = 0.0;
return;

}

ANSS NS

LA

20

Pk ek et i

--'a'-' P A

- e

5
~
~
.!
~
’o

"

/e d vk e e e e g &k e e sk ok vk sk vk 3k sk ke 3k ok ok gk 3k ek gk ok ok ok sk ok ko sk ok ok sk ok ok sk e sk ok ok ok gk ok ok ke sk v ok ok sk sk ok ok ok ke ok ke ok /

cortranlé() /* Modified from CORTRAN16.FR 11/23/85 by R. RUSSEL */
{
int j,i,ivinmax; s
double c,bmax,ir3d, jr3d;
for (i=1; i<iy+2; i++) { /* see note. Do 2D gestalt, rows first
for (j=1; j<129; j++) rinp{j] = craylj]li];
rtransb();
for (j3=1; j<129; j++) crayljlli] = rinplj]; /* put result into array
}
for (j=1; j<ix+2; j++) { /* see note. Now do columns
for (i=1; i<129; i++) rinpli] = crayljliil;
rtransb();
for (i=1; i<129; i++) crayljlli] = rinpli];
}
bmax = 0.0; /* Columns completed. Find location of max value
ir3d = 64.0; /* define preset values for a zero array
jr3d = 64.0;
for (i=1; id<iy+2; i++) {
for (j=1; j<ix+2; j++) {
c = cray[j][i];
if (¢ > bmax) { /* note: only go to ix,iy in array
bmax = c¢; /* because beyond that is all zero
ir3d = (double)i;
jr3d = (double)j;
11}
iwinmax = iy; /* scale

if (ix > iwinmax) iwinmax = ix;

ir3d3 = ir3d*(128.0/(double)iwinmax) + 0.5;
jr3d3 = jr3d*(128.0/(double)iwinmax) + 0.5;
return;

}

/***/
del()

{

printf("\n\n Deleting files with reserved names.");
system("delete bnorm.img;*"); /* these names are reserved for facefinder */
system("delete orig.img;*");

return;

Jhkkdkhkkkhkkhkhkkhkkkhkkhkhhkhkhkhkhhkhkhkhkkhkhkkhkkhkhkhkhkkhkkkhkkhhkkhkkhkhkhkkhkkkhkkkhkhkkkk/

*/

*/

*/

*/
*/

*/
*/

*/

JREIRIIIAA T I AA KA RK A AR AR R AR AR AR AR AR AR AR AR KRR KA AR AR Ak AA R Ak AR AA Ak kkhkk /

facerec(version)
int version;

{
char ch[2],t2{30],t3[30]),t4[30],t5]30);
int 1,m,n,p,dx,dy;
if (nf !'= 0) {
cls();
printf(" trying to recognize faces found...");
for (m=1; m<nf+l; m++)
t2[0] = '\O’; /* create file names for face # m */
t4{0] = '\O’;
strcat(t2,"bnorm.img;\0");
strcat(t4,"orig.img;\0");
t3[0) =m + '0’;
t3[1] = '\O’;
strcat(t2,t3);
strcat(té4,t3);
sx = 60;
sy = 30;
printf("\n Xs",t2);
sclear(0,1);
readim(sx,sy,200,200,t2,"nocomm"); display bright norm face */
1 = sy;
vhile(brpixel(sx,1l) '= 0) l++; /* get fx,fy values */
fy =1 - 1;
1l = sx;
vhile(brpixel(l,sy) != 0) l++;
fx =1 - 1;
dx = fx - sx;
dy = fy - sy;
cont enhance(m);
scale(m);
text(70,10,0,1,0,t2);
gestalt(m); gestalt values put in ilist[0] */
initialize();
sclear(0,1);
readim(200,sy,200,200, t4, "nocomm"); /* display original face */
text(200,10,0,1,200,t4);
if (version == 1) {
printf("\n Save in dbase? (Y/N) >");
scanf("%s",ch);
if (ch[O0] ==y’ []| ch[O] == 'Y") {
printf("\n enter name of subject (up to 10 letters) \nm>");
scanf("%s",t3);
p = 0; /* highest existing version # for this subject */
for (n=1; n<k+1l; n++) {
if (strcemp(ilist[n].name,t3) == Q) {
p = ilist[n].num;

)

k = k + 1;

P=Pp+ 1
ilist{k].name[0] = '\0’;
strcat(ilist[k].name,t3);
ilist[k].num = p;

ilist{k]
ilist{k]
o~ ilist[k]
S ilist[k]
ilist{k]
ilist{k]

ilist{k].

ilist[k]
ilist|k]
ilist[k]
ilist[k]
ilist[k]
t5[0] =

strcat(t>,"[face.

}

else {

.winlx
.winly
.win2x
.win2y
.win3x
.win3y
winéx
.windy
.winb5x
.windy
.winé6x
.winby
"\O’;

if (m < nf) {
printf("\n Forget about rest of faces and return to main menu? (Y/N) >");
scanf("%s",ch);

if (ch[O] == 'y’

return;

}
}
}
)

‘_ recognize(0);

-~ delete(t2);
delete(td);
cls();

}}

else {

LN { R | Y (T A L I I ||

ilist[0]
ilist[O]
ilist[0]
ilist[O]
ilist[O]
ilist[O]

ilist[O]
ilist[O]

ilist[0]
ilist[0]

.winlx;
.winly;
win2x;
.win2y;
.win3x;
.win3y;
ilist[O].
.winay;
ilistf[O].
.windy;
.winébx;
.winéy;

winéx;

winbx;

dbase]\0");
strcat(t5,ilist[k]}.name);
strcat(t5,".img;\0");

saveim(200,sy,dx,dy,0,t5,"nocomm");
writefile("|[face.dbase]others.dat;1",ilist,k);

I} ch[O] == "Y") {

/* pass in gestalt values

printf("\n face not found.");

prtc();

sy

S =
fy - 511

_0;

.
*

.......

of ilist{0O] */

'ft‘ln

. ‘.- . ‘R & < d b el AR avh - U L
T W RYRIY v \] Sl " ~ W - EA o R A R P oA

Jakdkdededkkkk kR AR ARk Rk sk ko ke ek ke ke gk ok ke ok k ko k ok kkkkk kA kkkkkd ko kkk /
static int resultsl[257]][5]);
static int list[101]); /* list of id#s ordered by distances in list2 */
static double t[101]),1ist2{101]; /* total distances (ftr all windows) */
static double v[101][7]); /* v[id][w] = distance from person #id to

unknown person for window #w (Russel, 1985:4-40a) */

[hhkkkdkhkkhkhkkhkkhkhkhkhkkkhkhhkkkkhkhhkkhkhkkhkkhhkhkhkhhhkhhkhhkkkhkhkhkkhkhhkkkkhkhkkkkkkkhkkkk/

recognize(num) /*from REMID.FR 06/03/86 by R. Russel */
int num; /* the position in ilist|{] of gestalt values to use. */

{

char t8[30];

double gix,giy,gux,guy,sigix,sigiy,a,b,c,most;

int id,w,m,n,j,confid, test;

double p[7] = {10.0,1.0,1.5,2.0,3.0,1.5,1.0}; /* windovw performance factors
(update after training and testing with sufficient samples */

/* note: p[0] is used for total of factors */
printf("\n\n\n Now trying to recognize subject in top half of screen.\n");
printf("\n Presently trained with %d subjects.”,(i/4));

v =1;
for (id=1; id<(i/4)+1; id++) {
m = id*4 - 3;
gix = ((double) (tlist[m].winlx + tlist[m+1)]).winlx + tlist[m+2].winlx
+ tlist{m+3].winlx))/4.0;

giy = ((double) (tlist[m].winly + tlist{m+1}.winly + tlist{m+2]}.winly
+ tlist{m+3}).winly))/4.0;

gux = (double) ilist[num].winlx;

guy = (double) ilist[num].winly;

sigix = ((double) (abs(gix-tlist|m].winlx)*abs(gix-tlist{m].winlx)+
abs(gix-tlist|m+1]).winlx)*abs(gix-tlist[m+1].winlx)+
abs(gix-tlist[m+2].winlx)*abs(gix-tlist|m+2].winlx)+
abs(gix-tlist[m+3].winlx)*abs(gix-tlist|m+3].winlx)))/4.0;

sigix = sqrt(sigix);

if (sigix < .5) sigix = .5;

sigiy = ((double) (abs(giy-tlist{m}.winly)*abs(giy-tlist{m].winly)+
abs(giy-tlist[m+1].winly)*abs(giy-tlist[m+1].winly)+
abs(giy-tlist[m+2].winly)*abs(giy-tlist[m+2].winly)+
abs(giy-tlist[m+3].winly)*abs(giy-tlist[m+3]).winly)))/4.0;

sigiy = sqrt(sigiy);

if (sigiy < .5) sigiy = .5;

a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
¢ = a + b;

viid}[w] = exp(-1.0*c/1.4) * pfw];

S ', _-.,.Jh_\g AN .{;-_,.,._
.

IEASRDS

w=2;
for (id=1; id<(i/4)+1; id++) {

A m = id*4 - 3;
& gix = ((double) (tlist[m].win2x + tlist{m+1}.win2x + tlist{m+2].win2x
+ tlist{m+3]).win2x))/4.0;
giy = ((double) (tlist[m].win2y + tlist[m+1}.win2y + tlist{m+2].win2y

+ tlist[m+3]).win2y))/4.0;

gux = (double) ilist[num].win2x;
guy = (double) ilist[num].win2y;
sigix = ((double) (abs(gix-tlist|m}.win2x)*abs(gix-tlist{m].vin2x)+

abs(gix-tlist[m+1l].win2x)*abs(gixk-tlist[m+1].win2x)+
abs(gix-tlist[m+2].win2x)*abs(gix-tlist{m+2].win2x)+
abs(gix-tlist[m+3].win2x)*abs(gix-tlist{m+3].win2x)))/4.0;

sigix = sqrt(sigix);

if (sigix < .5) sigix = .5;

sigiy = ((double) (abs(giy-tlist[m].win2y)*abs(giy-tlistim].vin2y)+
abs(giy-tlist[m+1}.win2y)*abs(giy-tlist(m+1}.win2y)+
abs(giy-tlist[m+2].win2y)*abs(giy-tlist[m+2].win2y)+
abs(giy-tlistim+3].win2y)*abs(giy-tlist|m+3}.win2y)))/4.0;

sigiy = sqrt(sigiy);

if (sigiy < .5) sigiy = .5;

a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
c =a + b;
viid]{w] = exp(-1.0%c/1.4) * pfw];

}

v = 3

for (id=1; id<(i/&)+1; id++) {
‘ m = id*4 - 3;
- gix = ((double) (tlist[m].win3x + tlist[m+1].win3x + tlist[m+2].win3x
+ tlist|m+3}.win3x))/4.0;

giy = ((double) (tlist[m].win3y + tlist{m+1].win3y + tlist{m+2].win3y
+ tlist{m+3).win3y))/4.0;

gux = (double) ilist[num].win3x;

guy = (double) ilist[num].win3y;

sigix = ((double) (abs(gix-tlist{m].win3x)*abs(gix-tlist[m].win3x)+
abs(gix-tlist{m+1].win3x)*abs(gix-tlist[m+1].win3x)+
abs(gix-tlist[m+2].win3x)*abs(gix-tlist[m+2].win3x)+
abs(gix-tlist{m+3].vwin3x)*abs(gix-tlist[m+3].windx)))/4.0;

sigix = sqrt(sigix);

if (sigix < .5) sigix = .5;

sigiy = ((double) (abs(giy-tlistim}.win3y)*abs(giy-tlist[m].win3y)+
abs(giy-tlist[m+1].win3y)*abs(giy-tlist[m+1].win3y)+
abs(giy-tlist{m+2]}.win3y)*abs(giy-tlist|m+2].vin3y)+
abs(giy-tlist[m+3].win3y)*abs(giy-tlist[m+3].win3y)))/4.0;

sigiy = sqrt(sigiy);

if (sigiy < .5) sigiy = .5;

a = (gix-gux)*(gix-gux)/(4*sigix*sigix);

b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);

C = a + b3

v[id])[v] = exp(-1.0%*c/1.4) * p[w];

}
B-42
A g R L Y (3, (T T R P e AP S RTINS fifiikfiﬂjzin A
W N PR Oy

£ b Sl W

[R g

ey

il e T,

3]
PR S W

"'n'r'

u

v = 4;
for (id=1; id<(i/4)+1; id++) {

m = id*4 - 3;
gix = ((double) (tlistim}.win4x + tlist[m+1]).windx.+ tlist[m+2].winéx
+ tlist[m+3).win4x))/4.0;

giy = ((double) (tlist[m].windy + tlist[m+«1].windy + tlist[m+2].windy
+ tlist[m+3]}.windy))/4.0;

gux = (double) ilist[num].winax;

guy = (double) ilist{num}.windy;

sigix = ((double) (abs(gix-tlist[m].win4x)*abs(gix-tlist[m}.windx)+
abs(gix-tlist[m+1].windx)*abs(gix-tlist[m+1].win4x)+
abs(gix-tlist[m+2].win4x)*abs(gix-tlist[m+2].winéx)+

abs(gix-tlist[m+3].winéx)*abs(gix-tlist[m+3].win4x)))/4.0;

sigix = sqrt(sigix);

if (sigix < .5) sigix = .5;

sigiy = ((double) (abs(giy-tlist[m].windy)*abs(giy-tlist[m].windy)+
abs(giy-tlist[m+1].windy)*abs(giy-tlist[m+1}.windy)+
abs(giy-tlist[m+2].windy)*abs(giy-tlist[m+2].windy)+

abs(giy-tlist[m+3].windy)*abs(giy-tlist{m+3].windy)))/4.0;

sigiy = sqrt(sigiy);
if (sigiy < .5) sigiy = .5;
(gix-gux)*(gix-gux)/(4*sigix*sigix);

b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
c = a + b;
viid][w] = exp(-1.0*c/1.4) * plw];

}

v = 5;

for (ids=1; id<(i/4)+1; id++) {

VIZN o

m = id*4 - 3;
gix = ((double) (tlist[m].winSx + tlist[m+1}.windx + tlist[m+2].winb5x
+ tlist[{m+3].win5x))/74.0;

giy = ((double) (tlist[m].windy + tlist{m+1].wind5y + tlist[m+2].winby
+ tlist[m+3].windy))/4.0;

gux = (double) ilist{num].winbx;

guy = (double) ilist[num].windy;

sigix = ((double) (abs(gix-tlist[m].win5x)*abs(gix-tlist[m].win5x)+
abs(gix-tlist[m+1].win5x)*abs(gix-tlist[m+1].win5x)+
abs(gix-tlist[m+2].windx)*abs(gix-tlist[m+2].win5x)+

abs(gix-tlist{m+3].vin5x)*abs(gix-tlist[m+3].winbx)))/4.0;

sigix = sqrt(31g1x),

if (sxglx < .5) sigix = .5;

sigiy = ((double) (abs(giy-tlist{m].win5y)*abs(giy-tlist[m].win5y)+
abs(giy-tlist[m+1}.windSy)*abs(giy-tlist[m+1].win5y)+
abs(giy-tlist[m+2].winSy)*abs(giy-tlist[m+2].win5y)+

abs(giy-tlist[m+3].winSy)*abs(giy-tlist{m+3].windy)))/4.0;

sigiy = sqrt(sigiy);

if (sigiy < .5) sigiy = .5;

a (gix-gux)*(gix-gux)/(4*sigix*sigix);
b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
¢ =a + b;

viid][w] = exp(-1.0*%c/1.4) * p|w];

.............
..........

»
v,

*

) v = 6;

. for (id=1; id<(i/4)+1; id++) {

. N m = id*4 - 3;

- N gix = ((double) (tlist[m]).win6éx + tlist[m+1l].winbx + tlist[m+2}.winéx
+ tlist[m+3].win6x))/4.0;

0 giy = ((double) (tlist[m].winby + tlist{m+1l].winby + tlist[m+2].winéy

~ + tlist[m+3].winby))/4.0;

gux = (double) ilist{num].winéx;

3 guy = (double) ilist|[num].winéy;

. sigix = ((double) (abs(gix-tlist[m].win6x)*abs(gix-tlist{m].win6x)+
abs(gix-tlist[m+1].winéx)*abs(gix-tlist[m+1].win6x)+

1 abs(gix-tlist[m+2].winéx)*abs(gix-tlist[m+2].win6x)+

-, abs(gix-tlist[m+3].wvinéx)*abs(gix-tlist[m+3].winéx)))/4.0;
W sigix = sqrt(sigix);
- if (sigix < .5) sigix = .5;

. sigiy = ((double) (abs(giy-tlist[m].win6y)*abs(giy-tlist[m}.win6y)+
abs(giy-tlist[m+1).winby)*abs(giy-tlist[m+1].winby)+
abs(giy-tlist[m+2}.winby)*abs(giy-tlist[m+2].winby)+

i: abs(giy-tlist[m+3]).winéy)*abs(giy-tlist[m+3].winby)))/4.0;
" sigiy = sqrt(sigiy);
o if (sigiy < .5) sigiy = .5;
ﬁ a = (gix-gux)*(gix-gux)/(4*sigix*sigix);
: b = (giy-guy)*(giy-guy)/(4*sigiy*sigiy);
c =a + b;
s v[iid][w] = exp(-1.0%c/1.4) * p[w];
-)
for (id=1; id<(i/4)+1; id++) {
- t{id] = 0.000000001;
R 40 for (w=1; w<7; w++) {
- - t[id] += v[id][w];
A }
t[id] = t[id]/p[0O]; /* max t[id] = 1.0 when distance from id to unknown */
} /* individual = 0.0 */
/* now have all distances ordered by id#, need to order id#s by distance */

1 for (m=1; m<101; m++) {

. list[m] = O;

- list2[m] = 0.000000001;

N)

.. for (m=1; m<(i/4)+1; m++) {

* most = 0.000000001;

< for (j=1; j<(i/4)+1; j++) {

s if (t(3j] > most) (

2 most = t{j};

. n o= jj

N }

}
» list[m] = n; /* id # */
,j list2{m] = t[n]; /* distance */
t[n] = 0.000000001;
R }
~
"
B-44

/* now have ordered list of candidates, need to display them */
test = O3
if (list2[1} > 0.001) {
printf("\n\n Candidate Distance"):
/* printf(" Confidence"); * /
for (m=1; m<(i/4)+1; m++) {
if (list2|{m] > 0.001) {
if (m == 1) {
printf("\n 1st Choice: ");
t8[0] = '\0’;
strcat(t8,"[face.dbase]\0");
strcat(t8,tlist|{list[1])*4 - 3].name);
strcat(t8,".pic\0");
readim(50, 286,200,200, t8,"nocomm");
text(50,266,0,1,200,tlist[list{1]*4 - 3}.name);
test = 1;

if (m == 2) {
printf("\n 2nd Choice: ");
t8{0] = '\0’;
strcat(t8,"[face.dbase]\0");
strcat(t8,tlist|[list[2])*4 - 3].name);
strcat(t8,".pic\0");
readim(200,286,200,200,t8, "nocomm");
text(200,266,0,1,200,tlist{list{2]*%4 - 3].name);
test = 2;

if (m == 3) {
printf("\n 3rd Choice: ");
t8{0] = ’'\0’;
strcat(t8,"[face.dbase]\0");
strcat(t8,tlist[list[3}*4 - 3].name);
strcat(t8,".pic\0");
readim(350,286,200,200, t8,"nocomm");
text(350,266,0,1,200,tlist]list{3]*4 - 3].name);
test = 3;

}
if (m == 4) printf("\n Others: ");
if (m > 4) printf("\n "),
/% confid = based on distance of this candidate and
distances to next candidates */
printf("%1lls Zf",tlist{list{m]*4 - 3].name,list2[m]);
/* printf(" %d",confid);*/

}
else m=200;

A

> 3 Al A A . R T T T N R R N A A T T TR AT T TR AT R

U4

2 .

¥ if (test == 0) {
i printf("\n\n Could not find any close enough candidates.");
o Pl printf("\n The computer has never seen this person before.");

— } -
if (test < 3 && test != 0) {
:~ printf("\n\n Could not find any more close enough candidates so");
» if (test == 1) printf("\n only displayed 1 picture.");
A8 else printf("\n only displayed 2 pictures.");
: }
. prtc();
return;

K }

: /o ek kok ok ok ke Rk ok ok ok ek ok ok ko ok ok sk ok ok ok ok ok ok ok ok ok ek ok ok ok ok ek ok ko ko kk ek ok /
- /* End of program */

te

.

o

”.

-

-

DY

Se B ia e £ o s i s an g

.

ko la o tag \

ITEX-100 Subroutines used by FACE.C

ACLEAR RHLINE

BLUR RPIXEL
BRPIXEL RTSUBTRACT
BWPIXEL SAVEIM
CAREA SCLEAR
CIRCLE SETCAMERA
FILL SETHDW
GRAB SETINMUX
HISTEQ SETLUT
INITIALIZE SETREG

4!: INITREGS SHARPEN
LINE SNAP
LINLUT STATIC LUTS
LOPASS STOPGRAB
MAPLUT SWAP6
MAREA TEXT
OPAREA WAITVB
READIM WHLINE
RECTANGLE WPIXEL
REPZOOM

w .

O

Appendix C

Autonomous Face Recognition Machine

User’s Manual

L an b o 4

T

N

NS

%

~

-
i lndnl

e
b

ad

Table of Contents

Introaduction+ . o . ..

Operation

N AT ’»'x’\.’.‘_ ‘\"__\._\.”

Logging On and Off
Two Things You Should Not Do ..
Image Acquisition
Face Location . . e e e e
Gestalt and Identlflcatlon e
Care and Feeding of the Database

Demonstration . . .
Identifying an Ind1v1dual
The Total System
Other Programs
Technical Details
Where is Everything?
Startup 0.
Protection
Modification
c-2

S NN -'\q\-‘v\\

{ L N I N N N B B |
QOWOOWd~dNhU o

oo

(;) (@]
ST
fu

(@]
[

[

|

SN W W WL U WL NLN WUV 4 W

: <o, Introduction

The information presented in this manual is divided into
0 two parts: Chapter 1 gives enough information for a casual
user to operate the AFRM, and Chapter 2 gives information
needed to modify, initialize and re-host the AFRM.

User friendliness was a primary concern when writing the
code for the AFRM. The AFRM contains self-explanatory menu
options, it tells the user exactly what is required from
each keyboard (user) entry and it is fault tolerant. The
AFRM code has been commented on in detail and uses only

simple C programming techniques (no nonsense like pointers

to arrays of pointers). The goal was to write the code as
ﬁea efficiently as necessary, and then as readable as possible.
' It is hoped that future modifications to the AFRM will
strive to maintain an easy user interface and minimum
additions to this manual.
o2
. c-3
~
%
A e S e A e S T, e e e e e S e

e

I. Operation

Logging On and Off

The easiest way to get to know the AFRM is to sit down
and use it. It is located on the Micro-VAX II designated
SMV2A in the AFIT Signal Processing Lab. To run the AFRM,
log onto SMV2A using the username FACE, no password is
required. The AFRM will run automatically and will perform
several seconds of hardware and software initialization and
will then present the main menu. When you are done using the
AFRM, return to this menu and select the QUIT option. This

will get you out of the program and automatically logout.

Two Things You Should Not Do

1. The AFRM needs to create temporary files now and then
as a normal part of its operation. It will delete these
files as soon as they are no longer needed. Since these
files are created and deleted without informing the user, the
user should avoid saving files with these temporary-file
names. Never save faces in files named:

BNORM. IMG
ORIG.IMG

At some un-announced point in time YOU WILL LOSE THEM.
2. The AFRM has been designed to be fault tolerant. You
can enter anything you want, at any prompt you want, and the

AFRM should handle it. The AFRM will inform you if your

input is invalid. The only entries not allowed are CTRL-C

r
.h
”
o
!
.
~
"\
N
i
>
-
b,
L:
g
i
Ei
v
ﬁj
‘.
”,
o,

and CTRL-Y which terminate the program without going to the

main menu option QUIT. These are not allowed because the
AFRM will not be able to save updated database files and
because the user will be allowed into the FACE account where
he shouldn’t be (the AFRM won't cause an automatic logout).
During normal AFRM operation this is not a concern for
the user because the CTRL-C and CTRL-Y entries are disabled
by a protection scheme described in Chapter 2. It is only
mentioned here to remind Special Users (those who modify,
install or initialize the system) to re-install the
protection scheme when they are done and to make them aware
of the consequences of CTRL keys when protection is not in

place.

Image Acquisition

There are several ways to input images into the AFRM and
there is a sub-menu for all the options. This sub-menu is
obtained by selecting main menu option #1. Most of the menu
options are self-explainatory and so minimum detail is given
here.

0: Return to Main Menu

l: Stationary Target -~ Allows acquisition of a
512 X 480 image from the camera.

mmmmmmwmﬁ‘ivz TR LT VLT LW TR A WA T TV W T s e
]
E

<

g 2: Moving Target - Acquires a background scene

- from the camera (nobody in it), then

A N acquires a second scene {(with subject).
T The AFRM will provide the rectangular

area that is different in the two

. scenes. This target area is all that

" is processed by the face locator (if

- locator is selected) and so the face

5 locator will be faster than it would

be for a full size scene.

3: Load From Memory - Allows user to load a
previously stored image (for example,
an image stored in the user’s personal
account on SMVZ2A).

4: Save in [(FACE]) - You can save images in this
account if desired but please reserve
the space in this account for images that
are useful to everybody. 1If you only
want the image for yourself then login
to your account and save the image using
TEST100.

5: Set Camera Port - The default port is (0) and
this allows use of the Dage camera. The
two General Electric cameras are connected
to ports (1) and (2).

6: Camera Check - Allows continuous acquisition
of images so you can position and focus
the camera.

7: Re-initialize Hardware - Go back to default
camera port, clear the screen, etc.

Face Location

Main menu option #2 runs the face location algorithm.
This algorithm will look for faces in the image on the screen
and save all it finds to temporary files. There is an option
to sharpen the scene that is normally not needed but some-
times helps the face finding process. This sharpening option

may be removed in the future.

- » St
Pd ’f_-f\":'r;’."--'] € n

ORI W LY LY LWLSE LIS LT AT e U LT LT S W

Gestalt and Identification

Main menu option #3 only works after a face(s) was found
by option #2. 1If no face(s) was found then this option will
return to the main menu. This option runs the gestalt
algorithm on the first face found by option #2. Then it runs
the recognition algorithm on that face. During recognition
the user is allowed to save the face and its gestalt data in
the database. There is no other time when a new face and its
gestalt data are available for saving in the database so save
it NOW if you want it, otherwise you will have to Gestalt it
again later {(faces are easily deleted from the database if
you change your mind later). If more than one face was found
in option #2 than all faces will be gestalted and identified

in the order found.

Care and Feeding of the Database

Several main menu options are discussed in this section
because they all have something to do with using and changing
the database.

4: Display Contents of Database

5: Delete a Subject - To "delete a subject”,
means to delete the training file for
this subject. The actual images and
gestalt values can still be saved in
the .IMG section (files it is not
trained on) and the AFRM can be re-
trained with this subject later. You
may also delete this subject from the
database altogether if desired.

6: Delete an Image - This option allows the
deletion of single images (files that

sy the AFRM is not trained on) from the
g database.
7: Train - This allows the user to train the
database with 4 files from the .IMG
section of the database. The files
must all have the same name and must P
have different version numbers. To
exit this option at any time, enter
a negative version number.
Fault tolerance is really evident in this section of the b
AFRM because it is so important to maintain a correct data-
base. The AFRM constantly checks user inputs for validity
and gives out pertinent information when it finds a mistake.
For example, suppose it is decided to train the AFRM with
the name Smith, version numbers 1, 2, 3, and 4. The AFRM .
will verify that the name you enter exists in the .IMG sec-
‘l; tion and that it does not exist in the trained section. It
LS
will verify that files exist for all the versions you type
in and that you have not typed the same version number more
than once. If you make a mistake and wish to exit to the ¥y
main menu, you are allowed to do so at any time.
Demonstration o
This section is for users who are already familiar with :
the operation of the other main menu items. The demonstra-]
tion option (#8) provides a menu with the following options:
Identifying an Individual 9
This option allows the user to demonstrate the recogni- 1
) A,)
N |
c-8 '
)
"‘-’ -’-.' - '.". - \"" 'x’\'-. X '. ;‘ e ‘ '-:"'-:"{"-:':‘;-';' ';':'.':"':"‘-";': ‘-‘:" ’»-' "t \.'r-\‘ -. \ ';":'n:.'i“:"\-'l‘: I o]'."'.‘3..'-\.\ ‘

n” tion capabilities of the AFRM by selecting an un-trained
? EA image from the database and asking the AFRM who it is. This
Ly 'S
option is also used to obtain recognition scores so that the

i AFRM can be evaluated.

2

| The Total System

» This option allows the user to run all AFRM algorithms

i together starting at image acquisition and ending with

. recognition. This option is run as follows:

. 1. Run the "Camera Ckeck" option and set the camera

. up to take a full body picture of a standing

: person. Then ensure nobody is standing in the
' field of view of the camera.

3 2. Select the total system option.

3. Select the camera port desired. After a couple
seconds, the screen will go black as the camera
continually acquires images and the itex board

é° applies real-time subtraction.

.
N 4. When the screen is black, have a subject walk
- into the field of view of the camera, turn and
N stare at the camera, and stand still for a few
o~ seconds. As soon as the AFRM "sees" the subject

it will snap a picture and begin to look for a
h face. (There is no sharpening option to worry
. about here.) 1If a face is found, then the AFRM
: will gestalt it and try to recognize the
. individual. (There is no save option here.)
“
5. After recognition, the user will be asked if

M) the whole process should repeat.
~
‘
\
N
L4
o
14
L4
"
4
2)
W L
» -
o c-9
o
L7
"
N

T . * e te twm N e Tt ~ "- ~ " .\ '-_
T A R N N TR e e e e T e

L S
W « . S

Other Programs

There are other programs associated with the development
of the AFRM that may be useful to some users. These programs
are found in the following directory:

dua2:[llambert.cdir]
The programs can be run by typing the following:
run {llambert.cdir]program name
I1f you don’t have an account on SMVZA where you can login and
run these programs, then login as USER, no password required.

The following programs are available and are described in
Lambert’s 1987 masters thesis, "Evaluation and Enhancement of
the AFIT Autonomous Face Recognition Machine”.

Sub Demo.exe
MTI.exe
Bright.exe

Graph.exe
Face Sig.exe

O ot e LT L e o . ORI X .

‘‘‘‘‘‘

W L W LW WU WL LN T e W Ta TN eF e T el

CAY
Ly
.

.

.

)

i
.

\
\
)

.
i
]

.
:
ll
i
,
.)
-
’
\
¥

II1. Technical Details

Where is Everything?

The executable AFRM program is located in the directory
dua2:[face] and is called FACE.EXE. The database files are
located in a sub-directory called dua2:[face.dbase]. There
are two database files, called TRAIN.DAT;1 (for the trained
gestalt files), and OTHERS.DAT;l (for the un-trained files).
The actual images of people stored in the database are also
located in this sub-directory.

The source code for the AFRM, called FACE.C, is located
in dua2:[llambert.cdir]. A good example of code for running

itex routines is TEST100.C, located in dua0:[itil00.itex].

Startup

If the AFRM is not running properly, has been changed, is
being hosted on another computer or for some other reason
needs to be started up from scratch, the following steps must
be done:

1. Ensure that FACE.EXE is located in a directory called
[FACE] and that the database files are put in [FACE.DBASE].
If you use any other directory names, then modify the source
code that specifically calls out these names and re-compile.

2. Ensure that the database files TRAIN.DAT;l1 and
OTHERS.DAT;1 exist. They can be created by putting an
asterisk (*) into each file. The asterisk is the EOF indi-

cator looked for by the AFRM when it reads these files.

Cc-11

, M W TR FEUTAGSY N e Te e e

There does not have to be any gestalt data in the files to

a
larid

start with.

e
- 3. Ensure that the protection scheme described in the
next section is in place.
Protection
In order to protect the AFRM and its database from
accidental changes/erasures, a login command file has been
setup that automatically runs the AFRM upon login and auto-
matically logs out when the AFRM stops. It also protects the
database files by turning off the CTRL-Y and CTRL-C functions
before running the AFRM.
In order to get around the protection, login to SMV2A as
FACE and immediately start hitting CTRL-C. This will
|® terminate the LOGIN.COM file as soon as it begins. Now you
. will be logged on and can do anything you want to the [FACE]
and [FACE.DBASE] directory contents.
LOGIN.COM contains the following commands:
$show quota
$set nocontrol=y
$define/user mode sys$input sys$command:
Srun face
$lo*gout :== logout,/full
$lo
Modification
If a change is needed in the AFRM then the C source code
(FACE.C) has to be edited, re-compiled and linked to the
appropriate libraries. The following commands are needed to
accomplish this:
o

AN Y T

I N R LR SEAL GRS R TR A

N At At . « . yaa® 08 tod Sah tad’ hd Vel VA" W (T W AR AL P ariariogth ath ate gl TSN
AN YA A A Tl Nl TR N RS T R e AN - -

1. EDIT FACE.C ;
2. CC FACE.C
3. @L FACE

.

.
he

The third command runs a command file called L.COM which

identifies all the appropriate libraries for you (so you

- WpTy T ¥ TEHEENRY e W W W W W
‘\
LNRS

don’t have to do all that typing). L.COM and an associated

file called OPTIONS_FILE.OPT are located in:
dua2:(llambert.cdir]

and should be copied into your own directory for use. The

contents of these files are as follows:

L.COM

link 'P1’,dua0:[{iti100.itex]itex100/library,
dua0:[itil00.toolbox]toolbox/library,
dua0:[itil00.vms]vmsl00/library,
dua2:[llambert.cdir]options file.opt

OPTIONS FILE.OPT T
SYSS$SSHARE : VAXCRTL.EXE/SHARE
A modification that may be necessary in the future is a
change to the declared size of the arrays in the AFRM. The
AFRM is presently set to handle up to 100 subjects in the

training file (400 gestalt sets, tlist[400]}) and 100 images b

in the non-trained file (100 gestalt sets, ilist[100]).

[YEIRRNL W gy I\ VW,

_t

“y 1WA B

a2 8 St a_ A ", "3 °a

Appendix D b

] Gestalt Files

v YT E X
)

o et

Page
D-2 TRAIN.DAT;1 The training file.
D-4 OTHERS.DAT;l1 The test file.

The top line shown in these files (heading)

is not present in the actual AFRM files.

e e

WL PR .S

The asterisk (*) at the bottom is the EOF

looked for by the AFRM. L

e £ oo

[S—

e e A e
R Ny £

. N e

~ 2.

y --..---.-r.\l.-\ AN -...-.-N:--.» AP S .. =Tl....\.n.,.-qwﬂ.ﬁ . ry.“\\\vll o/ ’

V9 'A% bS vb 99 LS 69 (1]3 b jaetrtisl
29 by vs 2% b9 6S b9 Lz £ Jierris(
65 27 vs 27 99 65 b9 LZ z Jrerrisl
6S bb Vs 27 29 65 65 Lz 1 Jrertist
09 SP LE Sb 8y 99 17 L b olAeuuw
09 LE 1v LE 96 8b 8y %4 £ oleuww
09 6¢ 6¢ 6¢ 8s 0S 8v %4 Z okeuw
65 6¢ 6¢ 6¢ 65 6% 6V Ve 1 oAeuwuw
9L 17 0s Sh 89 0§ 69 92 b jiaquetu
8L 187 86 Sb 6L bS 6L ¥4 £ jiaquerw
1L £b 0S £b 69 SS Z9 82 z Jiaquetw
L bE Ly 8¢ 99 £b 09 ve 1 Jiaquetw
£9 9¢ £5 8¢ L9 8y S9 ¥4 b piojmeins
£9 8¢ 4 8¢ 69 0S S9 ¥4 £ piojmei.
Z9 6¢ 0S 6€ 89 1 Z9 %4 Z piojme1ns
09 8¢ 0s 8¢ 89 8b 29 X4 1 piojmeins
29 4/ £S v 1L 6q 99 62 4 a17dA1puw
09 2 £9 2% €L S§ 99 62 3 ar1dipu
19 4’ bS 4, ZL bS G9 82 r a11d1puw
Z9 6¢ £S 6¢ 1L 0§ 69 Lz 1 81TA1pu
19 8¢ 0S 8¢ 69 0S 69 £2 b Aystaqeyuw
65 LE 0s LE L9 05 £9 X4 £ Aystiqeyuw
65 £€ 15 £€ £9 Sh L9 44 z Aystiqeyuw
09 1€ 16 1€ 69 rd4 99 02 1 Aystaqeyuw
8S bE Ly 23 09 £b 95 £2 b wIsayyaize
29 1€ 8v 1€ 99 6¢€ 8% 61 £ wiaylaiys
09 43 St 23 09 %7 SS £2 z wrayiaiza
09 43 15 43 b9 £v 29 12 1 wiaylyaizs
65 ve £v Ve 65 Sb 4 £2 v Ji1aquery
65 13 by G¢ 69 9% £S X4 £ jiaquerl
19 4 SP 43 Z9 47 4 X4 Z Jiaquer]
19 43 by 43 L9 (4 4 £2 1 jiaquery
AV Xv A€ X¢ AZ XZ K1 XT NOISY3IA IWVN

s
..r .

ool el =

+
v

-."
''m ' a

'~

AL i aNC

e

M YT O T WY LYY Y

¥

86 ov £9 ¥4 £9 LE 96 ov L 6% L9 97 b yonip
’ V6 18 65 LT 65 Tv £6 Ty 99 £5 29 LT £ yonip

86 6€ z9 ¥4 Z9 6€ 6S 6€ 69 £5 99 67 Y4 yonip

<6 47 8¢S 82 19 (4’ bS A L9 16 £9 82 1 yonip "
3 S6 8¢ Z9 97 Z9 8¢ ZS 8¢ 1L LY 99 92 b sisbois A
3 L6 Z G9 92 s9 44 ZS 4’ TL ZS TL 97 £ siabois
3 L6 127 6S 92 65 18 15 A7 69 15 b9 82 Z siaboas
E 96 £p 19 62 19 €b 16 £V 69 £ 69 62 1 sisboais
H L6 18 L9 97 L9 8¢ bS 184 bL 16 69 92 b abioabq
b 86 bE 99 Lz 99 LE 6¢ LE b9 4 bs ¥4 3 abioabq
; L6 8¢ 19 82 19 184 9% 9¢ L 6% 65 9z 4 abioabq
; L6 18 L9 82 b9 18 15 b viL bS L 8¢ 1 abioabq
3 z6 9¢ 09 92 Z9 18 Sh 9¢ Z9 15 85 12 v uosmepb
. 86 £€ 65 97 65 187 8y 18 £9 4 G9 X4 £ uosmepb
4 66 St LS 4 09 (1} by ov 29 1S 29 %4 2 uosmepb
3 L6 LE 09 14 z9 6€ v 6€ 96 05 bS ¥4 1 uosmepb
; 86 LY 19 0¢ £9 2 LE '3 96 96 LY 82 v Jiaquerp

00T 0§ LS 153 66 LY 9¢ Gb 4 6S £p 82 £ Jiasqueip
A 66 £S 8¢S 23 09 18 9¢ 9y 8¢ €9 £p 62 z Jiaqueip
P L6 LY 8¢S 153 £9 LY 8¢ LY bs 96 4 62 1 jiaquetp

N &

LA, S Sy PO AP AR, S o o L5 RARRARS,. (PP IT iy L e e e v s W e AT T RAPTOA 1 RP TR

b % -~ -

FOS T TN <,

WL

AR Bl Vi o T

¥ 1 Sy

96 iv 9 Lz b9 184 SS 184 69 £S [4°] st ! yonap Q N
96 Sy 6% LT 69 18 18 18 4 69 £S LY 6¢ T siabois o
S6 134 t£9 8¢ t£9 oy £S ov 0L 0s 89 8¢ T abioabq o
S6 8t LS e LS ov (4 7 ov LS 16 16 b T uosmepb n@
66 ¢S 89 6 S9 Ly 9¢ Sy 9¢ 8¢ Sy Lz 1 Jisquetp .
96 (44 69 Lz 6S 1A% ve (/A% 99 6S Z9 Lz T J1er1ts(o
90T 1V PL X4 VL v 9% 107 <L (4] L9 9¢ 1 JlaqueTu e
86 9% 9¢ ve 09 ov (44 0v 99 bs 0S 9¢ T oAeuw o
66 (4 09 6¢ (4] (4 €9 (4 tL SS 89 6¢ T a11iipu nm
86 6¢ LS (/X4 19 6¢ 16 6¢ L9 6b G9 ve T pPi103jme10o3 ux.
96 St 09 x4 09 13 14 St LY LY L9 Y4 T Aystaqeyu wﬁ
<6 143 9§ 1 %4 09 43 Sb [43 8% 13 4 SS £ T miayisazye S
96 9¢ 99 (44 19 pe 134 (43 LS %4 0¢S [44 T jisqueTy o
X9 X9 AS XS b Xv Xg X¢ AT XT AT XT NOIS¥3A INVN N
e

RS

A

S u3

LV» : L4 e --u.l -”.f-
..\o- ‘nﬂ ' .-.&f
;

-~ Bl ox Z ™ w W W . LIPS n . a_®_ 8 _+_ = = v ¥ 8 a9 I S PR PRI . e e+ _a_ma . e W W B _e_ . \ 2 A

VW T W w

-

Lo

Appendix E

Description of Brightness Normalization

»

N
'ﬂ :’}“J’J

oL

;fﬁht{ﬂ

B s & &4 & LR

-’J.'Il’f

hY ':"- o :"‘ { h)

.,
»

The brightness normalization algorithm, shown on page E-4
is used to preprocess images fed to the AFRM. This appendix
describes how the code implements the equation descri. in
Chapter 3, and shows the effects that the algorithm has on
various scenes.

The algorithm reads the original image into the array
"PIC" and puts the normalized image into the array "NORM".
The sum of all pixels in a given neighborhood is called
"NEIGH" and the average, "AVG" is this sum divided by the
number of pixels in the neighborhood; in this case 81 (9X9).
In order to speed up the program, it is noted that adjacent
neighborhoods have common pixels. Each new neighborhood uses
72 of the previous neighborhood’s pixels and 9 new pixels in
its sum (NEIGH) so instead of adding up 81 pixels for each
NEIGH value, 9 pixel values are subtracted from the previous
sum and 9 pixel values are added to the previous sum. This
reduces the total number of computations needed to perform
the algorithm. Recognizing that each new set of 9 pixel
values is a column of pixels, the computations can be further
reduced by calculating the sums for all the columns first.

In this way a new NEIGH value is the old value plus one
column value minus another column value. This alone does not
speed up the algorithm though because the column values still
have to be computed. The speed up comes when the column
computation is sped up. (just as we went horizontally across
the screen adding 1 col and subtracting 1 col, we will update

columns in the vertical direction by adding 1 pixel and sub-

E-2

e T e AT et et et .t e e Tt e U N M N te te e M Ne At AN N ML L
."J‘_'." .'_:.,‘-} -_‘--_,.-_. - -.r‘, ..__\.-‘-1‘.:.. .‘ ".\'.:._ .._.-'..-"_ - -’. - .1’, - ,’\‘_ N ‘_\. ~p -,.\.;\\~_

; tracting 1 pixel). The total number of computations has now
h R been reduced from 512X512X81 (21 million per image) addition
operations to approximately 512X512X4 (1 million) additions,
allowing the algorithm to process an image in 8 seconds. The

lines that perform the "speed processing” are lines 27 to 39

in the code.

2 The pixel that gets modified in each neighborhood is the
‘2 center pixel for that neighborhood, as shown by lines 42 and
- 48 of the code. ([x,y] is the corner of a neighborhood so

i [x+4,y+4] is the center). This pixel is called "PIX". The
; equation discussed in Chapter 3 is implemented in the four

: lines numbered 41 through 44. Reading the image into PIC and
i writing NORM out to the screen (lines 23-25 and 50-52) adds
é about 6 seconds to the total process.

:; l’ Figures E-1 through E-7 show the type of processing that
E can be accomplished by this alogirthm with various modifica-
E tions to the equation in line 44. 1In all cases, the top half
' of the figure is a graph of the brightness variations along
ﬁ, the black line indicated in the bottom half of the figure.

E Some figures show two images side by side. 1In these figures,
t the left half of the figure shows the original image and the
3 right half shows the processed image.

g

P

SIS PN g oy Y S A (L
o L T A o A T 8 e

P

WONOAMUVEWND -

/e % e e e e ke Je e e e vk v e v v vk ek e e vk e ke vk ok vk ok sk sk vk ok vk ok e vk sk vk sk ok vk ok sk sk vk ke vk ok vk ok e sk sk ok ok ok ok sk sk ok ok

* BRIGHT.C : Brightness normalization algorithm *
* will process whatever is on monitor. *
* Author : Laurence C. Lambert - 1987 *

Fkkkhkkkkkhkhkhkkkkhkkhkhkhkhkhhkhkkkkkhkhkhkkhkkhkkkhkkhkkhkhkkkhkkkhdrckhkkkkkkkkkkk/

#include "sys$library:stdio.h"
#include "duaO:[iti100.itex]stdtyp.h"
#include "duaQ:[itil00.itex]}itex100.h"
struct arrayf

int data[512];
)i

static struct array pic[512],norm[512]};

static int col[512];
VAR S22 282222223220 222 s 2 ssa s s s st s sttt st sisssssisdsssly

main()
{

unsigned base = 0x1600;

long mem = O0x200000L;

int flag = 1,block = 8;

int pix,avg,diff,neigh,x,y,i,j;
sethdw(base,mem, flag,block);

printf(" takes about 15 seconds to process. please wait...");
for (y=0; y<480; y++) { /* read from video memory */

rhline(0,y,512,pic|y].data);

}

y = 0;

for (i=0; i<512; i++) {

colfi] = O; /* setup all columns for first y value */
for (j=y; j<y+9; j++) col[i] += pic[j].data[i];

)

for (y=1; y<471; y++) {

for (i=0; i<512; i++) { /* nov all columns calculated faster */
col[i) += (pic|y+8].datali] - picly-1).data[i]));
}
x = 0;
neigh = 0; /* setup first neighborhood */
for (i=x; i<x+9; i++) neigh += col[i];
for (x=1; x<503; x++) { /* nov all other neigh are calc faster */
neigh += (col[x+8] - col[x-1]);
avg = neigh/81; /* these four lines are the heart of it all */
pix = pic{y+4].data[x+4]; /* neighborhood size = 9x9 */
diff = pix - avg; /* center size =1 */
pix = 128 + diff;

/* for awvesome effects try: */
if (pix < 0) pix = O; /* other sizes, */
if (pix > 255) pix = 255; /* pix=128+multiplier*diff,*/
norm[y+4].data[x+4] = pix /* thresholding result, */

}} /* etc... */

for (y=0; y<480; y++) {
vhline(0,y,512,norm|y].data);

)
}

dusds Teutbtip "1-3 21nb1g4

TR _
. ®
-f\ v

PP LI Ar of L AN O SR : LA LA AN RRAn
FEN VAN AL .n "2 .n.(\.,.s.sf..f.‘._. v MR (X .

.‘\

-) - N -
TaN s

)
-

AR A
et

x1d}] Ag pa13J1poW °8usds *z-3 ainbty

’ [33t1p + x1d

0
o - y——— o~

.
)
3
E ;
' !
i !
’
-
b, Vel
{
l° . 23]
L)
,
b
K
]
o
.
K
s
K
K
-
]
.
. .
Y ’ '
A4 v s
<5 o, o
- L] Y -‘-
E,

. 2

THGTS OOTOCLD: ARRAAAS, TIISOPR: GEDLRES. [ONDnls DOKEE Ty sy a xS RN Yy o P WERRSOLY VLA

PN R

(331p + 821

x1d) Ag patjipoW 8uadg ‘§-3 aanbiy

-

55 %85 Y

LA IL I \.lﬂ‘

r

Ty s WS 8 0, ‘

.

«

4
3
o
1

L

|

Ny

R TR U N AT

PR VR Y

N B
RSN

Lt e

(331P«b + 821 = x1d) Ag patjTpoW auads "p-3 ainbij g

T T v v RIS o L 5y e S 7 VIR P M NP C L L Tt

Y~

[331psg + x1d

~
-
.

x1d]) Ag patjTipoW 8uaods

‘g-3 8inbrg

{331p + 821 = x1d] Ag paljTpOW 2uadS °"9-3 2inbriga

PONBIES
» ”- i’u”k.l. ’-@;\‘
Y .‘
iy

-Cm

I 2

E-10

..J‘.\Ns <,

(bae

x1d] Ag patjTpoW auads

‘L-1 ainbiga

AR

»
o

"y

PR

RS ARRIE. ahRRARA (AR

PRI

PN
e

R ARRRAL

E-11

PN AN,)

- et e

Appendix F

Scenes Used to Test Face Location

The scene numbers shown below correspond to the numbers
in Table 5-2. 1I1f a false alarm was found in a scene, the
false alarm is shown on the page following that scene. The
top of the false alarm scene shows the location of the facial
signature feund, and the bottom of the scene shows the false

face isolated by an ellipse.

Page Scene # Page Scene #
F-2 1 F-15 11
F-4 2 F-16 12
F-17 3 F-17 13
F-8 4 F-19 14
F-9 5 F-20 15
F-10 6 F-21 16
F-11 7 F-22 17
F-12 8 F-25 18
F-13 9 F-27 19
F-14 10 F-28 20
F-1

N
3
:
‘
\
Al
Al

......

k
€
-
4 e

L} L]
: '\f\ . .‘-
3 -)

o
B . [,
] rd « 2" vy TR n e I IR Nt e e Y S . -
.’ 4 “ e s o ’ N ; \ Y
s N ; N .,.,\V- S PN TR ,.u.............-..-‘ L S]

NV W PN W, W, W W W Wy W W W0 Wad W ¥ M

o

Pl W
N e

o

L0

i

oy
N e

NI T

-

de

e e 8
a"a’

. .
2'a”a"a

v, BE 20

-’

-
4

PP
e
g
. !
L

TN . I SRR R I I I AR SR -
. % ‘. ‘L, -r".r\ _.r . (\-r,,hf.- \.-". -’\-’._-".j‘\-".- P LR Sl S W R e R e e T T TS By) -
: Scadiiniad a W ; ” :

W

TV R NI T TR NN TR W T AN T MR

T O m A NP Y rEy. WL

P TR A

- %

F-5

R L T

NAY

--. ". -~
NN "

- 8" AT T
OMEEA LN

AT
Sy ey
3

. 4" e

BRI
4

BTN

I TR

.-.‘ _.."p ‘o

RS LR C SN

. -
«, -
L W .

s

LS

-
Rty . N AR y,
D v g1 e . »

ot o s o : Aty LY

F-6

T

B TR

AP .
P) & e N

;‘.\A- g‘ -..s-t B §]

PP CIPREE o 3 n e - PP - -, - - -

YW TR YRNYT ' ‘wwna . M o @ik o U T N wJ 2 - ; et

SR AN LT,

ML SRR AT L WA YW

*!133:43,,\

,

VI VOV UV VUL LU W AW LTI LW LT L TR Ve

LD WWIMALEIE

o o o o re A bos oD

. *
b t ‘l."."l..".'.,\l\
AT XY R R [XESSER AR =

Sl ML MAN-RIANS

A -
I T %112‘\?0’: ..a.
o Svly [
S I SR i

. w
- A, S

P ¥
"J‘\J'\'-F\"

¥

Y
Y
&y

DAl LPANYr Yy FPrEEEXSE AN

F-9

I L T I e
VLA

LR 7T .
IR N

‘-v"

A

N
DV Py)

eyt
Pl T {C

PO TR N T R S A S AR S PP o LN L S SR e IR S SR S) . R R
. - ' DR -, “ =, -, BRI . LI - R S A - M
A e A e P T i T D S APy P Sl I Sl IR 30, VI T W I NP S PR T,V |

W U W WL WL WU W W WL WL WL WL

v

afak =

- -

AR
Ltate

SN

e

SR F-11

e
[,
W8

e e B T S E IS L A e e e e e

N g

LR SNy

T RTATAAN
n J"\-f

F-12

B @
L 'u .I.-.-,
- _-4-..
- .!-lx\\‘-.‘ ~ U ST UL IR W ¥R,y v 5 ov, .
- . e, ETRE TORARAT VIV YRAXAIPPE TRININI S TR A

w-- uv.-»-n *o

LI, S

F-13

D-A198 919 EVALUATION AND ENWANCENENT OF THE AFIT AUTONOMOUS FACE 3/3
RECOONITION WACHINECU) AIR FORCE INST OF TECH
TERSON AFD OH SCHOOL OF ENGINEER

ING
UNCLASSIFIED L C LNDERT DGC 87 AFIT/GE/ENG/87D F/G 12/9 NL

_BLEEEEE.

o - i -

...\..\\\ﬁ.,

o - " N S \‘.....-\ [}

ol i AA A .‘rn v |-Lp 1 r.vﬂn.ftllf . AAAC A A ;-IA-J..;..-...- ..\...»..-..h... . RRASA WA
g ZERRAAL LS NN LY Mv.u...‘.. 7 WP XN X X NIRRT S NI i/ N XA SR (A A :

o & _t @ 0
s = . - b B Prtbﬁ
7 »

-y
1

[V
-
—

+
»w

9 80 0,578,8
| J

| ,
Hgas o A_
=l =l

WU
0
'

-

N

el
L4

20,040,700
|

ORI

'.UE.
ey

LIRS AN JEN

2

-

2-

R

®

PR

F X

LA AN

'-

1.

s a s 8 &R

L. . %e

-

R

I AN

'."\ e]
s I W Ty

-

o

e

N

e ™
I'*v-" -, "

) ‘wm g T -
w,
NV,

- w

J"\-l'

“w

-".-J' o

Aol
Nax

- Y - - - e
T, Lt S L ¢

W

T

-

-

]

X WY T

s P

W VP nta' 2 0

’
v

-
i.

feas b

F-15

S R i N T o T e e i
" 2 s) e o N . . r A N , A - Y

e e i i SR

S
',
1.‘
.

M ol ola a4 ut4 i ot h alh - all Al

N g

.
.

F-16

.

Y L AN AV

\‘st“ ‘.. .-n'-

- .o - DR - - v . - - - X " S A A
e =g — e - Mo . - -

: ..-:....
AR EL

~|.nv.v v(.

- B ..-I
BN |

l--L

..u(u.

..-L

i

%

7 %

A 7

- - - [2R YL N PP - » ~a .

B 8.0 .0 D 0B B0 a0 Ro¥ SV Lot Ra]

S
LT e
-

TN

F-19

|

~
Moy
\
r
»
\
.

»
.0
* . -l
h l\ ..I.‘. LA
- Ll
] - - - h - ‘2l . « L LT ‘4 v T L . AR, - h & o7 n--c\..t..l.\K. < AS HJ*'
=rrel Breew ANANSEE AP AT YORXNS . GRIRIRS SRS P T YRR AR PN e,

‘el

-

& & Y%

D B o o S

AN RS AN

AL,y %!

o
DU S

P

ey o

R .

'. L LI K o
oo, "- e f,-- -.'-,’-." ATy L KR LN g N -.* CRRLLCeY

v, iYL

wyw v,

v e _r v r.¢

Lo 2 am mn g

F-21

Nl A

7

-'.A -
MY -
al

eadaralo 't ga giadbad
g a'ia'tad 2 L Lb i tab el tabe i A

..-. -
LSV ipY

NN
X e

F-22
NN
o0 0 g

r\
AN
t ol L

At
adale

ST
P AU PY .\

e
b
S

>

e

A athY,

LT Y TR Y T YYY T

F-23

-.\tv-.-.n\<

[y \I
s . A
"l o,)
. z FARRD -.- Seter PR n J-C-J.t . .-v . -11---.....--n-uvlu r!a- .m.....- . e . . -f-’.-!.*n ~ A
,U.e\,n..h\v\»-.-)\.- .\..-‘-\Lﬁ\\ \n)J.... ey o ff..&.&\&.wr A (S YNNN 5% el ,-.\ WX RNy RN

-
e

-’
O]

4_(-

‘n e
&
3

YN

Y .-“.r"..-"}‘a.

w

l<..l\ n.‘ .\ l.‘

At \-.-.,QI\-,-J‘\,‘-*‘- 'n)\.

- \‘-
VY

)

»

AN

cevsvenseene

ooy
WYX

1 N
e

TR AR A

(s, 8,

e)

F-24

LS

wahlYy n-.

LN
Y % 'x

WA
II l' A

.I\l"»fl\ Soy
UL I 4 lv

% "y --_I- o

PR

.
*

e, n o

. ‘I'sﬁll nnr-\ﬂ‘\...\.“f.

F-25

S

7

o

H4

O e

A L A A A

Vol LA AP

H

AL ANYLY

LYo Julh

LAANS

2

-
K
-

A AN SR .r AL A NS

X A Aol .8) Sot Saf Sab ol N . O Sl tal agd d nalk vak. val ol *aly Ate - ol "Il

T
4
4
\

1] \~

o

s
-,
-~
«
-
(Y
)
4
|
-

XN Y
U..,.‘
]
A
PP
!
|
;

b
i

LKA

de

al
JK o«
.

.

. 'I ‘l 'l

o €
. S

R N R e R i T S ol T TRt S S St St Tl N R R T I e IR SN A S S P o T G R Ry -l
" ‘!‘-g ‘r\'.-\"\’\' a.-f-,"\f.' oy '. -_J'-_' . "-_"\ LA !_‘._ RN _\\ - _5 ‘. 'y .. - '\._ y '\.\ ‘\ \.\ \

hat' dal

F-29

o R

-

. A e 8 W _E_m_w cr .,
IRV r Y. o rRi R TLARARS SISO (PN WA Y NN A AT Ve AORAA

-y
- A e) R

.1-
l-.
S
*
N
L[4
O
-ﬂ'.'
NS
vlﬂ
73
e
Rd
v 4
:
ot /
e
o
—
=
(&) (8]
—
» [}
ord C
o —
[=) |
[} — (&)
Q, ©
Q
[7]
[}
&)
o)
w
]
B
fﬂl» . ‘o’
rrd o ot
-
F‘J! ..r’hlh.! : w.....\\.,“‘.-\ lﬂ-nﬂl b-\«,u.\Jb AT h». QGG TN NN ---%-.nwu (l vy I»J. .-.f : "4, .-‘ ~ % ﬂv.:-)..-..\..-..ﬁ-n.- “‘ o s PE ..-m .I..- TN

N W WUV UV YUYW UV UYL WL

o)

i

; One of the recommendations for further research with the
i‘ Sf AFRM is to make it process multiple pictures of a subject’s

. face. 1In order to do this, the AFRM has to be made as fast
;‘ as possible. Figure 4-2 shows that the longest time spent

; in the processing loop is 3 minutes for gestalting the face.
P If this time can be reduced significantly, then a real-time
]§ processing of faces will be possible.

i Recognizing that the gestalt calculation is basically a

center-of-mass calculation, a much simpler and faster algo-

i; rithm can be performed. This calculation is shown in the

ig code on page G-4. The new calculation was tested and was

’; found to give nearly the same results in only 5 seconds. The
EE difference in results is due to the fact that the calculation
Eg treats all points as constant mass, but some points may have
- (g different values (the contrast enhancement doesn’t produce a
ié purely binary scene).

§§ Gestalt valuves for a face were obtained using both cal-
K culations and are shown below.

-;: 01d 3 minute Gestalt New 5 second Gestalt

- 1 27,55 27,55

2 48,59 46,59

s 3 38,40 38,38

. 4 38,61 38,61

L 5 27,59 27,59

2: 6 40,99 40,99

5 The two sets of gestalt data yeilded slightly different
':: distances in recognition, but these differences did not alter
g; the recognition results (ordering of candidates). Still, it
1;? would be wise to maintain a database where all gestalt values
Y
.é . are obtained from the same source.

I

x G-2
o

%

a R S e e e e L e T T e T R Vs L R N TR X
A WA Ny .y L~ A “ v -y - . < "r ¢ oL v, u'{!" o«

L e

......

The new gestalt calculation is implemented as follows:

1. A copy of FACE.C was made and called NEWFACE.C.

2. CORTRAN16 is replaced by the subroutine on page G-4.

3. RTRANSA and RTRANSB are deleted.

4. The source code is compiled and linked in accordance with
the User’s Manual.

5. The executable program, NEWFACE.EXE, is placed in the
directory [FACE].

6. The LOGIN.COM file for account "FACE" is modified,
changing the line "run face" to "run newface".

To go back to the original version, simply delete the program

NEWFACE.EXE and reverse the change made in step 6 above.

- LT
L

“ . .- . NS e et e

. o . B T A
. . . . - - - LS . .t e A
A A S A N AR Y S N AR S S A G A S L PR A, G W VST VS

0
?
4
il
D
‘éﬂ
L]
:-' /**/
%: e cortranlé()
K - (

int j,i,ivinmax,xtot,ytot,num;
: double c,bmax,ir3d,jrid;

o s B

% Xtot = ytot = num = O;

R for (i=1; i<iy+2; i++) {

o for (j=1; j<ix+2; j++) {

« if (cray{j][i] > 100) {

Xxtot += j;

" ytot += i;

- num++;

< 1))

-, ir3dd = (double) (ytot/num);

L jr3d = (double) (xtot/num);;

ivinmax = iy; /* scale */

3 if (ix > iwvinmax) iwvinmax = ix;

b ir3d3 = ir3d*(128.0/(double)iwvinmax) + 0.5;
» jr3d3 = jr3d*(128.0/(double)iwinmax) + 0.5;
. return;

n }

/**/

<

N (®

v

<

\l

N

N

".

”

¢

-Z
N

-
L
f \-':

~l

~I

LY

"
e N

AR

2 G-4

5

»

X

-
1] e e e it e e e . P IR "'"a' "‘J'— Y
L e At Ca e "'u"m*\.z\....\mﬁ."'x e N A e e L.-i:}.'.';-.-..; o, Lﬂ

VW W W WIWOW W W W, L v e vy

Bibliography

Bromley, L. K. Computer-Aided Processing Technigues For
(o Useage in Real-Time Image Evaluation. .lasters Thesis,
University of Houston, May 1977.

$ Edwards, Betty, Drawing on the Right Side of the Brain.
A L.A. California: J.P. Turcher Publishing, 1979.

- Goldstein, Alvin G.; Mackenberg, Edmund J. "Recognition
" of Human Faces from Isolated Facial Features: A

o Developmental Study", Psychonomic Science, Vol 6,
N No 4, 1966.

Haith, Marshall M.; Bergman, Terry and Moore, Michael J.
"Eye Contact and Face Scanning in Early Infancy",

AR

. Science, Vol 198, 25 Nov 1977.
- AR AR
i: ITEX-100 Programmer’'s Manual. Part # 47-510008-02.
- Imaging Technology Inc. Woburn MA, 1986. i
~ﬁ Kabrisky, Matthew, Director Signal Processing Laboratory.
~ Personal Interview. Air Force Institute of Technology
oy Wright-Patterson AFB OH. May 1987.
.
N Kernighan, Brian W.; Ritchie, Dennis M. The C Programming
B (® Language. Bell Laboratories. Prentice Hall, 1978.
f;: Luria, A. L. Human Brain and Psychological Processes.
- New York N.Y. Harper & Row Publishers, 1966.
-,
o
Routh, Richard L. Cortical Thought Theory: A Working Model
il of the Human Gestalt Mechanism. PhD Dissertation,
. AFIT/DS/EE/B5-1, Air Force Institute of Technology, DTIC
~ Document, July 1985.
~
151 Russel, Robert 1. Personal Interviews. Air Force Institute
> of Technology, August and November 1987.
A . Performance of a Face Recognition Machine
~ Using Cortical Thought Theory. Masters Thesis,

S AFIT/GE/ENG/85D, Air Force Institute of Technology, DTIC
‘ Document, December 1985.

Smith, Edward J. Development of an Autonomous Face
Recognition Machine. Masters Thesis, AFIT/GE/ENG/86D-36,

- Air Force Institute of Technology, DTIC Document,
y December 1986.
Cd
! Werblin, Frank S. "The Study of Sensitivity in the Retina",
‘ Scientific American, Jan 1973.
“ P
2 W
- BI-1
1
W
'.:. W LY T Y LT e T e .
X (»ﬂ'.‘q- f‘ '.- A AR N ey a RN '._:_ s '\.r s I‘_ .r__-f,‘._ P AP r.;.-_".'_;.;'.-.. N 'J".;f « -’.‘ o \4'\- RO N

VITA

\"\
.

.

Captain Laurence C. Lambert was born on 29 October 1960
in Pittsfield, Massachussettes. He attended the University
of Lowell, Lowell Massachussettes, and received the degree
of Bachelor of Science in Electrical Engineering in May 1982.
After working for a year at the University of Lowell Research
Foundation, he entered the USAF Officer Training School and
was commissioned in June 1983. He then served as a Systems
Integration Engineer for the Life Support Systems Programming
Office, Aeronautical Systems Division at Wright-Patterson AFB
until entering the School of Engineering, Air Force Institute

of Technology, in June 1986.

Permanent address: 44 Lexington Ave #4

Magnolia, Mass 01924

LA LN S

.y A - e e ettt et et mtatET et AT et ataT .. Nt etetaTu", P e PR S
\',\’ .q\'-.".'_;\ -... B _...‘.‘.. \\. \.' ._‘.\. T \.\-_.\-' -"\. _. o -. -.‘I v'-" J_ " n - -' A -.' * ™. Y

Y

~

-
!

~

e L F_w e

.

\J b) R) W (% N “fa® Rt % a .
p D0 R A M SN RS R b RS T T O O T V! LR R AR LY DAL 0N N G M A A A AL A Al A b iaal o S ad val > gan ahe ke goe g

t UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
h: REPORT DOCUMENTATION PAGE OMB No 0704-0188
j Ta REPORT SECURITY CLASSIFICATION Vb RESTRICTIVE MARKINGS
¢t UNCLASSIFIED
Ta SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
N 2b DECLASSIFICATION ' DOWNGRADING SCHEDULE APPROVED FOR PUBLIC RELEASE:
- ' v DISTRIBUTION UNLIMITED
: 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
: AFIT/GE/ENG/87D-35
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
AR (If applicable)
:: School of Engineering AFIT/ENG
‘.: 6c. ADDRESS (City. State, and Z/P Code) 7b ADDRESS (City, State, and 2ZIP Code)
- Air Force Institute of Technologv
Wright-Patterson AFB, OH 45433
-: 8a NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
-, ORGANIZATION (If apphcable)
. 8c ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
by PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
N
“~
A 'Y TiTLE (include Security Classification)
- Evaluation and Enhancement of the AFiT Autonomous Face Recognition Machdne
N
- 12 PERSONAL AUTHORIS;
/% _Lambert, lLaurence C. Captain USAF
. "“'sa TYPE OF REPOR” *3b T ME COVERED 14 DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT
P MS Thesis FRONM 7O 1987 December 215
. 16 SUPPLEMENTARY NGTA™ON
[~
LY
17 COSA™ (ODES 18 SUBIECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB GRO P ~ Computers Artificial Intelligence
Q0 02 Image Processing Image Segmentation
: 19 ABSTRACT (Continue on reverse if necessary and identify by block number)
.. Thesis Chairman: Matthew Kabriskyv, PhD g L\) e T I 4
:‘:.' Professor of Electrical Engineering 2’0 : ' 3‘“{\6’?ﬂ,
.._\ . . . » -
.-:: i
-
.:\
.
-
7
20 DISTRIBUTION AVAILABILITY OF ABSTRA(T 21 ABSTRACT SECURITY CLASSIFICATION
\--:.-L,NCLASSWED eNometeEDd O same A ret {3 b1ic UsERS UNCLASSIFIED
223 NAME OF RESPONSIBLE INDIWVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Dr, Matthew Kabrisky Professor, GS-15 {o13) 220-2276 AFIT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

e Sl e A e T e e Tt] e AN}
A A A T PR o

Continued from block 19: Abstract P
»- This thesis evaluates and improves the Autonomous Face
Recognition Machine (AFRM) created in 1985 at AFIT. This
effort involved re-writing the AFRM code in the C programming
language and hosting it on a Micro-vax II. 1In addition,
several new algorithms were added to the AFRM including:
brightness normalization of input images, moving target
detection, and a new face location algorithm. The results
of this effort include: improved face location, higher
recognition accuracy, and near real-time processing.
This thesis includes a complete description of the AFRM
and its development history.

d
§
:
v
o
A
;

i

. .- e e e . T et
PR . . PR

S et e . SN

B P e

R S TR S Sy SR N S N Y.

Y

a o2

